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Motivation and background

Motivations for vine based models

Many data structures exhibit
I different marginal distributions
I nonsymmetric dependencies between some pairs of variables
I heavy tail dependencies between some pairs of variables

Cannot be modeled by a Gaussian or multivariate t distribution

The copula approach allows to model dependencies and marginal
distributions separately.

Marginal time dependencies can be captured by appropriate univariate
time series models.

Elliptical and Archimedean copulas do not allow for different
dependency patterns between pairs of variables.

Vine based models can overcome all these shortcomings.
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Motivation and background

Multivariate distributions
Multivariate distributions describe stochastic behavior of several
variables jointly.
Marginal distributions describe stochastic behavior of a single variable
(examples: univariate normal, exponential)
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Often used: multivariate normal (left: ρ = 0, middle: ρ = .8,
right:ρ = −.5)
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How to construct multivariate distributions with different margins?
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Motivation and background

Dependency measures

Most well known dependency measure is the correlation ρ between
two random variables.

It only measures linear dependencies.

Non linear dependencies can be detected by Kendall’s τ which
measures the difference between the concordance and discordance
probability.

Upper (lower) tail dependence measures the probability of joint large
(small) occurrences as one moves to the extremes.

multivariate normal has no tail dependence, while the multivariate t
distribution has tail dependence.

When upper and lower tail dependence are not the same we speak of
asymmetric tail dependence.

How to separate dependency patterns from the marginal behavior?
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Motivation and background

Joint density and contour plots
joint density plot (right: ρ = 0, middle: ρ = .8, left: ρ = −.25)
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Motivation and background

Conditional distributions

vine distributions are defined using conditional distributions

conditional distributions describe the stochastic behaviour of variables
under the condition that other variables are fixed.

conditional = unconditional distributions if variables are independent

Conditional density of (Xi ,Xj) given that Xk = xk

fi ,j |k(xi , xj |xk) :=
fijk(xi , xj , xk)

fk(xk)
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Motivation and background

Copula approach

Consider n random variables X = (X1, . . . ,Xn) with

pdf cdf
marginal fi (xi ), i = 1, . . . , n Fi (xi ), i = 1, . . . , n

joint f (x1, . . . , xn) F (x1, . . . , xn)
conditional f (·|·) F (·|·)

Copula

A copula with C (u1, . . . , un) and copula density c(u1, . . . , un) is a
multivariate distribution on [0, 1]n with uniformly distributed marginals.

Sklar’s Theorem (1959) for n=2

f (x1, x2) = c12(F1(x1),F2(x2)) · f1(x1) · f2(x2) (1)

f (x2|x1) = c12(F1(x1),F2(x2)) · f2(x2)

for some bivariate copula density c12(·) such as normal, t-, Clayton and
Gumbel .
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Motivation and background

Bivariate elliptical copula families

Gaussian copula
(left τ = .25, right: τ = .75)
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t-copula with df = 3
(left τ = .25, right: τ = .75)
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Motivation and background

Bivariate Archimedian copula families

Gumbel copula
(left τ = .25, right: τ = .75)
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Clayton copula
(left τ = .25, right: τ = .75)
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Motivation and background

Meta distributions
are build using a copula (u1, u2) and different margins (normal/exponential
(x1, x2) or normal/normal (z1, z2))
Gaussian copula
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Pair-copula constructions (PCC) of vine distributions

Pair-copula constructions in 3 dimensions

f (x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1)

Using Sklar for f (x1, x2), f (x2, x3) and f13|2(x1, x3|x2) implies

f2|1(x2|x1) = c12(F1(x1),F2(x2))f2(x2)

f3|12(x3|x1, x2) = c13|2(F1|2(x1|x2),F3|2(x3|x2))f3|2(x3|x2)

= c13|2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))f3(x3)

f (x1, x2, x3) = c13|2(F1|2(x1|x2),F3|2(x3|x2))c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2))

× f3(x3)f2(x2)f1(x1)

Only bivariate copulas and univariate conditional cdf’s are used. This can
be easily generalized to n dimensions.
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Pair-copula constructions (PCC) of vine distributions

Regular vine distributions

Many PCC’s are feasible. Bedford and Cooke (2002) introduced a
graphical structure to help organize them.

Gaussian vines were analyzed in Kurowicka and Cooke (2006) while
estimation for Non Gaussian ones started with Aas et al. (2009).

Pair copulas model (un)conditional dependencies between two
variables.

A parametric regular vine distribution R(V, C,θ) with specified
margins has three components:

Components of a regular vine distribution

1 tree structure (set of linked trees) V
2 Parametric bivariate copulas C = C(V) for each edge in the tree structure

3 Corresponding parameter value θ = θ(C(V))
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Pair-copula constructions (PCC) of vine distributions

Regular vine tree structure

An n-dimensional vine tree structure V = {T1, . . . ,Tn−1} is a sequence of
linked n − 1 trees with

Vine tree structure (Bedford and Cooke (2002))

Tree T1 is a tree on nodes 1 to n.

Tree Tj has n + 1− j nodes and n − j edges.

Edges in tree Tj become nodes in tree Tj+1.

Proximity condition: Two nodes in tree Tj+1 can be joined by an
edge only if the corresponding edges in tree Tj share a node.

Special cases:

D-vines use only path like trees

canonical C-vines use only star like tree
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Pair-copula constructions (PCC) of vine distributions

C and D-vines

C-vine: each tree has a unique
node connected to n − j edges

f1234 = [
4∏

i=1

fi ] · c12 · c13 · c14

·c23|1 · c24|1 · c34|12

2 3

1 4

12

13

14
tree 1

13

12 14

23|1

24|1
tree 2

23|1 24|1
34|12

tree 3

D-vine: no node is connected to
more than 2 edges

f1234 = [
4∏

i=1

fi ] · c12 · c23 · c34

·c13|2 · c24|3 · c14|23

1 2 3 4
12 23 34

tree 1

12 23 34
13|2 24|3

tree 2

13|2 24|3
14|23

tree 3
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Pair-copula constructions (PCC) of vine distributions

A seven dimensional regular vine tree structure

1 2 3 4

5 6 7

1, 2 2, 3 3, 4

2, 5 3, 6 6, 7
(T1)

1, 2 2, 3 3, 6 6, 7

2, 5 3, 4

1, 3|2 2, 6|3 3, 7|6

2, 4|33, 5|2

(T2)

1, 3|2 2, 6|3 3, 7|6

2, 4|3 3, 5|2

1, 6|23 2, 7|36

1, 5|231, 4|23

(T3)

1, 4|23 1, 5|23 1, 6|23 2, 7|36
5, 6|1234, 5|123 1, 7|236

(T4)

4, 5|123 5, 6|123 1, 7|236
4, 6|1235 5, 7|1236

(T5)

4, 6|1235 5, 7|1236
4, 7|12356

(T6)

1
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Pair-copula constructions (PCC) of vine distributions

Storing regular vines specifications in matrices
R-vine matrix (Morales-Napoles (2008),Dissmann (2010)):

M =



4
7 5
6 7 1
5 6 7 7
1 1 6 2 6
2 3 3 3 2 2
3 2 2 6 3 3 3


Indices for pair-copulas in corresponding R-vine distribution:

col 1 col 2 col 3 col 4 col 5 col 6
4, 7|6, 5, 1, 2, 3 5, 7|6, 1, 3, 2 1, 7|6, 2, 3 7, 2|3, 6 6, 2|3 2, 3
4, 6|5, 1, 2, 3 5, 6|1, 3, 2 1, 6|3, 2 7, 3|6 6, 3
4, 5|1, 2, 3 5, 1|3, 2 1, 3|2 7, 6
4, 1|2, 3 5, 3|2 1, 2
4, 2|3 5, 2
4, 3
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Pair-copula constructions (PCC) of vine distributions

Conditional cdf’s
For v = (v1, . . . , vn) and v−j = (v1, . . . , vj−1, vj+1, . . . , vn) j = 1, . . . , d

f (x |v) = cxvj |v−j
(F (x |v−j),F (vj |v−j)) · f (x |v−j)

Univariate v :

Since f (x |v) = cxv (Fx(x),Fv (v))fx(x) we have

F (x |v) =

∫ x

−∞

∂2Cxv (Fx(u),Fv (v))

∂Fx(u) ∂Fv (v)
fx(u)du

=
∂ Cxv (Fx(x),Fv (v))

∂Fv (v)

General v : Joe (1996)

F (x |v) =
∂ Cx ,vj |v−j

(F (x |v−j),F (vj |v−j))

∂F (vj |v−j)
All conditional cdf’s in an R-vine can be recursively determined.
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Pair-copula constructions (PCC) of vine distributions

Scope of the vine models

The following copula classes
are vine copulas

I multivariate Gaussian
copula

I multivariate t copula
I multivariate Clayton

copula (Takahasi (1965))

The number of different vine
tree structures is huge (see
Morales-Nápoles et al.
(2010)), additional flexibility
through choice of copula
families.

Contours of bivariate 13 margins
with standard normal margins

DV(G( 1 ),C( −7 ),C( −7 ))

−3 −2 −1 0 1 2 3

−
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−
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−
1

0
1

2
3

DV(t( 0.8 , 1.2 ),G( 1.75 ),t( −0.95 , 2.5 ))
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3

DV(F( −40 ),C( 20 ),F( 100 ))

−3 −2 −1 0 1 2 3
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2
3

DV(J( −4 ),J( 24 ),J( 7 ))

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(C=Clayton, G=Gumbel, t=Student,

F=Frank, J=Joe)

Efficient estimation and model selection are vital
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Estimation and model selection methods for PCCs

Parameter estimation for given tree structure and
copula families

Sequential estimation:
I Parameters are sequentially estimated starting from the top tree until

the last (Aas et al. (2009), Czado et al. (2011)).
I Asymptotic theory is available (Haff (2010)), however corresponding

standard error estimates are difficult to compute.
I Can be used as starting values for maximum likelihood.

Maximum likelihood estimation:
I Asymptotically efficient under regularity conditions, again estimated

standard errors are numerically challenging.
I Uncertainty in value-at-risk (high quantiles) is difficult to assess.

Bayesian estimation:
I Posterior is tractable using Markov Chain Monte Carlo (Min and Czado

(2011) for D-vines and Gruber et al. (2012) for R-vines)
I Prior beliefs can be incorporated and credible intervals allow to assess

uncertainty for all quantities.
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Estimation and model selection methods for PCCs

Sequential and ML estimation for PCC’s (n=3)
Parameters: Θ = (Θ12,Θ23,Θ13|2)
Observations: {(x1t , x2t , x3t), t = 1, · · · ,T}
Sequential estimates:

Estimate

Estimate Θ12 from {(x1,t , x2,t), t = 1, · · · ,T}
Estimate Θ23 from {(x2,t , x3,t), t = 1, · · · ,T}.
Define pseudo observations

v̂1|2t := F (x1t |x2t , Θ̂12) and v̂3|2t := F (x2t |x3t , Θ̂23)

Finally estimate Θ13|2 from {(v̂1|2t , v̂3|2t), t = 1, · · · ,T}.

Maximum likelihood

L(Θ|x) =
T∑
t=1

[log c12(x1t , x2t |Θ12) + log c23(x2t , x3t |Θ23)

+ log c13|2(F (x1t |x2t ,Θ12),F (x2t |x3t ,Θ23)|Θ13|2)]
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Estimation and model selection methods for PCCs

Joint estimation of tree structure, pair copula
families and parameters: Sequential approaches

Classical approach (Dißmann et al. (2011))
I For T1 use a maximal spanning tree (MST) algorithm to find tree

which maximizes the sum of absolute empirical pair Kendall’s τ .
I Use AIC to choose the pair copula families in T1.
I Apply MST to the graph of all nodes of T2 (edges in T1) with all edges

allowed by proximity. Kendall’s τ estimates use pseudo obs.

Bayesian approach
I Reversible jump (RJ) MCMC (Min and Czado (2011)) and an MCMC

with model indicators (Smith et al. (2010)) were used for D-vines
choosing between an independence copula and a fixed copula family
(nonsequential but tree structure known).

I Gruber et al. (2012) developed a sequential RJMCMC choosing tree
structure, copula families and parameters jointly for T1 and then fixes
the specification for the most sampled T1 before proceeding to T2, etc.
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Estimation and model selection methods for PCCs

Full Bayesian approaches

Update mechanism for full RJ MCMC and simulated annealing:

Choose randomly k ∈ {1, . . . , n − 1} to update trees Tk , . . . ,Tn−1:

Generate proposal tree-by-tree: for Ti ∈ {Tk , . . . ,Tn−1}:
I Propose tree structure for Ti :

F random walk: remove randomly one edge and add randomly one edge
which is allowed by proximity

F independent: propose arbitrarily one allowed tree

I Propose pair copula families for Ti and the corresponding copula
parameters using centered parameter proposals at MLE of copula
parameter for each pair

Accept or reject the joint proposal for trees Tk , . . . ,Tn−1 with
acceptance probability α:

I use MH ratio for RJ MCMC
I use cooling acceptance probability for simulated annealing
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National indices

Application 1: National indices

10 national indices: AUS, CAN, CH, DEU, FRA, HK, JPN, SGP, UK,
USA

dates: Jan 2008 until June 2011 (757 daily observations)

marginal time dependencies: AR(1)-GARCH(1,1) with t innovations

allowed pair-copula families: Clayton, Frank, Gaussian, Gumbel, Joe,
independence, and Student’s t
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National indices

Classical sequential approach with independence
tests (I)
First tree: all t-copulas with df between 5 and 14, Kendall’s τ estimates
between .32 and .79

Tree 1

t,0.32 t,0.75

t,0.57

t,0.47

t,0.53

t,0.66

t,0.79

t,0.5

t,0.55

SGP

UK
FRA

HK

AUS

JPN

CH

DEU

USA

CAN

25 / 39



National indices

Classical sequential with independence tests (II)
Other trees: few Gumbel, survival Gumbel, Frank, and survival Clayton are
used, Kendall’s τ estimates vary between .06 and .22, pair copulas on trees
3 and higher can be chosen as independence copula

Tree 2

SG,0.05
N,0.1

N,0.17

t,0.22

SG,0.1

N,0.11

t,0.08

G,0.08

FRA,UK

SGP,UK

HK,SGP

AUS,HK

AUS,JPN

CH,FRA

DEU,FRA

FRA,USA

CAN,USA
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National indices

Bayesian approaches

Sequential Bayesian approach: same first tree as the classical
approach, only one pair-copula family is different, concentrates on 2
first tree structures and about 10 different first tree/copula family
combinations using 20000 MCMC iterations per tree

Simulated annealing (left) and full RJ MCMC (right): different first
trees

Tree 1

t,0.52,9.39

t,0.7,9.71

t,0.54,6.19

G,0.18

t,0.54,8.75
t,0.46,9.34

t,0.57,6.99

t,0.62,8.39

t,0.79,6.34

DEU

USA

UK

CAN

JPN

AUS

HK

SGP

CH

FRA

Tree 1

SC,0.13

N,0.22

N,0.7

t,0.27,6.96

t,0.79,9.01

t,0.27,13.48

t,0.66,6.86

t,0.56,8.04

t,0.28,11.5

JPN

USA

UK

DEU

HK

FRA

SGP

CH

CAN

AUS
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National indices

Model comparison

Log-likelihoods of estimated models:

# Par. LL AIC BIC

R-vine (sequential, no ind. tests) 61 3,998.0 −7,874.0 −7,591.6
R-vine (sequential, with ind. tests) 35 3,958.9 −7,847.8 −7,685.8
R-vine (full RJMCMC) 55 3,964.0 −7,818.0 −7,563.4
R-vine (simulated annealing) 58 3,996.0 −7,876.0 −7,607.5
Non-Gaussian DAG (part. corr.) 30 3,784.6 −7,509.2 −7,370.3
Non-Gaussian DAG (vine-based) 27 3,772.7 −7,491.4 −7,366.4
Gaussian DAG (part. corr.) 18 3,716.6 −7,397.2 −7,313.9
Gaussian DAG (vine-based) 16 3,708.7 −7,385.4 −7,311.3

For the Bayesian approaches the posterior mode model and estimates are
used.
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S&P select sector indices

Application 2: S&P select sector indices

Gruber et al. (2012) use daily log returns from 9 sector indices: 300
trading days before (bear) and after (bull) March 9, 2009 (S&P 500 low)

index S&P code index name

1 IXB Materials Select Sector Index
2 IXE Energy Select Sector Index
3 IXI Industrial Select Sector Index
4 IXM Financial Select Sector Index
5 IXR Consumer Staples Select Sector Index
6 IXT Technology Select Sector Index
7 IXU Utilities Select Sector Index
8 IXV Health Care Select Sector Index
9 IXY Consumer Discretionary Select Sector Index

Uni. MA(1)-GARCH(1,1) with Gauss innovations remove marginal time
dependencies. Copula data formed by using the emp. prob. transform.
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S&P select sector indices

Most sampled models using sequential RJMCMC
bear market: consumer discretionary (IXY) in center

Tree 1

t,0.65,11.69

SG,0.61

t,0.49,7.42

t,0.69,4.22

t,0.71,12.65

SG,0.6

t,0.62,13.62

t,0.68,9.3

IXR

IXY

IXV

IXU

IXT

IXI

IXB

IXE

IXM

Tree 2

t,0.21,7.45

G,0.16

t,0.13,3.86 G,0.29

C90,−0.12

G270,−0.13

N,0.15

IXR,IXV

IXR,IXY

IXU,IXV

IXT,IXY

IXI,IXY

IXB,IXI

IXB,IXE

IXM,IXY

bull market: industrial (IXI) in center
Tree 1

SG,0.7

t,0.5,4.98

SG,0.52

t,0.66,9.88
SG,0.58

SG,0.64

SG,0.65

SG,0.51

IXI

IXY

IXR

IXV

IXT IXM

IXB

IXE
IXU

Tree 2

t,0.15,9.61

t,0.14,7.22N,0.21

C,0.14

N,0.18

SG,0.24 N,0.13

IXI,IXR

IXI,IXY

IXR,IXV

IXT,IXY

IXI,IXM

IXB,IXI

IXB,IXE

IXE,IXU
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S&P select sector indices

Further results and comparisons:

There is evidence of many nonsymmetric dependencies and lower tail
dependence for some pairs

Asymmetry and lower tail dependence occurs more often in the bull
market compared to the bear market

The R-vine obtained by the Dißmann et al. (2011) appraoch agrees in
first tree for bear market, while the trees agree for the first two trees
for the bull market.

More independence copulas are chosen by the Dißmann et al. (2011)
approach compared to the sequential RJMCMC.

Strength of dependencies go down as the number of conditioning
variables go up.
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Special vine models

Special vine models (I)

vine copulas with time varying parameters:
I Almeida and Czado (2011) and Almeida et al. (2012) allow an AR(1)

driven copula dynamics
I Almeida and Czado (2011) develops a bivariate Bayesian approach with

credible intervals, while Almeida et al. (2012)) use simulated ML and
apply it to the stocks of the DAX (29 dim)

I regime switching vine models were considered by Chollete et al. (2008)
and Stöber and Czado (2011)

I Stöber and Czado (2011) determines crisis and non crisis regime
through rolling windows.

truncated and simplified R-vines:
I Heinen and Valdesogo (2009) use simplified C-vines in high dimensions
I Brechmann et al. (2012) derive test to determine truncation level
I Brechmann and Czado (2011) develops vine sector models
I Brechmann and Czado (2012b) use a vine based model with VAR

backtesting
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Special vine models

Special vine models (II)

Bauer et al. (2012) develop and fit Non Gaussian directed acyclic
graphical (DAG) models based on PCC’s, first selection methods for
building up the DAG graph are developed.

discrete vine copulas are treated in Panagiotelis et al. (2011)

Brechmann and Czado (2012a) develop an R-vine model which can
capture both between as well as serial dependencies.

Bernard and Czado (2010) use an R-vine to price multivariate options

Dependencies between claim numbers and sizes in different insurance
risk categories are modeled in Erhardt and Czado (2010)
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Summary and outlook

Summary and extensions

PCC’s such as C-, D- and R-vines are very flexible.

Sequential and MLE parameter estimation of C and D-vines are
available in R package CDVine.

Sequential and full Bayesian and non Bayesian model selection of vine
trees and copula families for regular vines available, but need further
testing and development

Extensions for the future:
I use of non parametric pair copulas
I development of spatial vines
I vines in data mining

Vine resource page:
www-m4.ma.tum.de/forschung/vine-copula-models

Vine workshop book: Kurowicka and Joe (2011)
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Summary and outlook

Thanks to my collaborators (K. Aas, A. Frigessi , A. Min, E.
Brechmann, C. Almeida, M. Smith, A. Panagiotelis, A. Bauer, T.
Klein, M. Hofmann, J. Dißmann, H. Joe, J. Stöber, U. Schepsmeier,
D. Kurowicka, L. Gruber...)

Next workshop: Copulae in Mathematical and Quantitative
Finance (Krakow, July 10-11, 2012)

worcotha.mimuw.edu.pl/index.htm

Summerschool for Ph.D. students (Garching 30.7-3.8.2012)
http://www.ma.tum.de/Mathematik/IsamSummerSchool12
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