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Labeled examples are 
constraints ...

GORI AND MELACCI

Example 2 OPTICAL FLOW

In computer vision, the classic problem of determining the optical flow consists of finding smooth

solution of the velocity field under the constraint that the brightness of any point in the movement

pattern is constant. The smoothness of the velocity field can be expressed by choosing a differential

operator like the gradient or the Laplacian according to the general norm 1. For instance, if u(x, y)
and v(x, y) denote the component of the velocity, we can choose to minimize
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which comes from imposing that the brightness of a particular point E(x, y, t) is constant. The prob-

lem is classically solved by converting the above constraint into a penalty term so as to determine a

soft-constraining optimization (Horn and Schunck (1981)). A number of other relevant problems in

the field of computer vision can be effectively be approached within the framework of variational cal-

culus (see e.g. Bertero et al. (1988)). More advanced solutions might arise from imposing additional

constraints from the real-world while maintaining the idea of working with parsimonious agents.

3.1 Learning from examples

The classic framework of supervised learning from examples is a trivial instance of learning from

constraints. We distinguish regression and classification. Let y be the target function, where y(x) ∈
IRn

for regression, and y(x) ∈ {−1,+1}n
for classification. Interestingly, this classic framework can

be reproduced either by universal or existential constraints. For example, in regression in X can be

imposed by ∀x ∈ X : f(x) = y(x), while the classification can be translated by f(x)�y(x)−ν ≥ 0,

where star is the element-wise product. Learning from examples can also be reproduced by the trivial

case of existential quantifier with void existential set. In this case, we show that we reduce to an iso-

perimentric variational problems. Let � ∈ IR+
and θ ∈ IRn : θ ≥ 0 be. For any task indexed by

j ∈ INn, we establish a link with the problem of finding f(·) such that

χj(f) ∼ �− θj � yj(x)− fj(x) �p≥ 0, (6)

where p = 2 for regression (r) and p = ∞ for classification (c). Notice that for classification, if we

assume that supx∈X f(x) ≤ 1 then

�− θj � yj(x)− fj(x) �∞ = �− θj � yj(x)(1− yj(x)fj(x) �∞
= �− θj � 1− yj(x)fj(x) �∞≥ 0,

which yields

inf
x∈X

(fj(x) · yj(x)) ≥ 1− �

θj
. (7)

As will be shown is Section ??, the continuous target is transformed into a sequence of desired

values, so as we end up in the classic framework of learning from examples. An interesting extension

of this classic framework arises in classification tasks when replacing supervised pairs (xκ, yκ) with

labelled information that involve sets instead of points.

Let {Xκ ⊂ X , κ ∈ IN �} be a collection of labelled sets so as the training set becomes

EL =
�
(Xκ, yκ) ∈ 2X × Y, κ ∈ IN �

�
. (8)

12

classic learning from examples

examples can be sets

as this becomes a box, the pair is a proposition
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8 Learning with Box Kernels
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Fig. 2. An SVM trained on a 2-class dataset using the box kernel (red crosses/boxes:
class +1, blue circles/boxes: class -1). (a) The separation boundary when only labeled
points are used; (b) using labeled box regions only; (d) using both labeled points and
regions; (e) training the classifier with a larger λ (it penalizes the data fitting); (e)
when a labeled point (+) is incoherent with the label of the leftmost blue-dotted box
region; (f) the level curves of the function f in presence of incoherent supervisions.

how to sample the regions on which prior knowledge is given, and a considerable
amount of points may be needed, especially in high dimensions.

In each experiment, the features that are not involved in the available rules
are bounded by their min, max values over the entire data collection. Classifier
parameters were chosen by ranging them over dense grid of values in [10−5, 105],
and using a cross-validation procedure (described below).

Diabetes. The Pima Indian Diabets [12] dataset is composed by the results
of 8 medical tests for 768 female patients at least 21 years old of Pima Indian
heritage. The task is to predict whether the patient shows signs of diabetes.
KSVMs have been recently evaluated in this data [13], and we replicated the
same experimental setting. Two rules from the National Institute of Health are
defined, involving the second (PLASMA) and sixth (MASS) features,

(MASS ≥ 30) ∧ (PLASMA ≥ 126) ⇒ positive

(MASS ≤ 25) ∧ (PLASMA ≤ 100) ⇒ negative.

We note that the rules can be applied to directly classify 269 instances,
and only 205 of them will be correctly classified. A collection of 200 random
points is used to train the classifiers, 30 points to validate their parameters,
whereas the results of Table 1 are computed on the rest of the data, averaged
over 20 runs. When using rules and labeled point, BOX shows a slightly better
accuracy than KSVM but the two results are essentially equivalent. We noted
that the information carried in the labeled data points is enough to fulfill the
box constraints. Differently, when only rules (i.e. labeled box regions) are fed to

Pima Indian Diabetes Dataset

body mass index  
blood glucose
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TABLE 1
The average accuracy and standard deviation on the

diabetes data set in the setup of [18] (KSVM).

Method Mean Accuracy Std
KSVM (rules only) 64.23% 1.19%
BOX (rules only) 70.44% 1.03%

KSVM 76.33% 0.63%
BOX 76.39% 1.30%

In that paper, two rules from the National Institute
of Health are introduced, which involve the second
(PLASMA) and sixth (MASS) features, that is

(MASS ≥ 30) ∧ (PLASMA ≥ 126) ⇒ positive

(MASS ≤ 25) ∧ (PLASMA ≤ 100) ⇒ negative.

Notice that the rules can be applied to classify di-
rectly 269 instances, but only 205 of them are correctly
classified, that is the given rule-based knowledge
is affected by a significant degree of uncertainty. A
collection of 200 random points is used to train the
classifiers, 30 points to validate them, whereas the
results of TABLE 1 are computed on the rest of the
data, averaged over 20 runs. BOX and KSVM exhibit
roughly the same accuracy, but when only rules (i.e.
labeled box regions) are fed to the classifier, then the
generalization capability of BOX is significantly better
than KSVM’s.

4.2 Breast cancer prognosis
The Wisconsin Breast Cancer Prognosis (WBCP) [17]
is a collection of records that represent follow-up data
for 198 cases of breast cancer, divided in patients that
remained cancer free or that experienced a recurrence
of the cancer (the recurrence time or the disease-free
time are available). Each record contains 32 features,
out of which we find the diameter of the excised
tumor (SIZE) and the number of metastasized lymph
nodes (NODES). This dataset has been used in two
distinct settings in [2], [4] and in [5], [6].

In [2], [4] the recurrence of cancer is evaluated in a
period of 60 months by KSVM and SKSVM (Gaussian
kernel). A set of 41 (out of 110) records corresponds to
patients whose cancer had recurred. Two rules were
provided by a doctor,

(SIZE ≥ 4) ∧ (NODES ≥ 5) ⇒ recurrent

(SIZE ≤ 1.9) ∧ (NODES = 0) ⇒ non recurrent,

which can be applied to directly classify 32 instances.
Notice that only 22 of them are correctly classified.
??? Stefano The classifier accuracy was determined
by 10-fold cross-validation. The second rule contains
an equality that we converted to (NODES ≤ η) ∧
(NODES ≥ −η), where η = 10−4. In TABLE 2
we report the classification accuracies of the different
algorithms. BOX overcomes slightly the other algo-
rithms.

TABLE 2
The average accuracy and standard deviation on the

WBCP data in the setup of [2] and [4] (KSVM and
SKSVM).

Method Mean Accuracy Std
KSVM (rules only) 69.09% 18.28%
BOX (rules only) 67.27% 14.34%

SKSVM 68.18% 16.17%
KSVM 69.09% 14.96%
BOX 70% 12.15%
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Fig. 6. Number of metastasized lymph nodes versus
tumor size in the WPBC (2 years) data, where blue
circles are recurrent cases and red crosses are non
recurrent ones. The black-bounded regions are the
knowledge base on the former class (approximated in
box regions by the blue boxes).

In [5], [6] the task is to predict if a patient will
remain cancer free for at least 24 months, investigated
with the NKC and PKC algorithms (Gaussian kernel).
The 81.9% of the 155 records are cancer free, so that
the learning task is significantly harder. A set of 3
rules was introduced from a simulated oncological
surgeon’s advice. An expert selected 3 regions on the
space determined by the SIZE and NODE features
that are supposed to lead to a recurrence of the cancer.
Their complete expressions can be found in [5] and
they are depicted in Fig. 6. However, we note that
both NKC and PKC rely on a discrete sampling of
the available knowledge sets, that in this experiment
was performed by considering the data points that
fall inside the supervised region [5], [6]. We approx-
imated the knowledge regions with boxes, designed
to include the same points on which NKC and PKC
sample the space. The accuracy of each algorithm is
measured by a leave-one-out procedure (TABLE 3).
For each experiment, a 10-fold cross-validation of the
training data was used to validate the classifiers (for a
total of 155 ·10 runs). Introducing prior knowledge by
means of the BOX kernel leads to the same results of
NKC and PKC. As a matter of fact, the misclassified
points falls in regions that are not affected by the
given knowledge. The significance of this result is in
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Fig. 6. Number of metastasized lymph nodes versus
tumor size in the WPBC (2 years) data, where blue
circles are recurrent cases and red crosses are non
recurrent ones. The black-bounded regions are the
knowledge base on the former class (approximated in
box regions by the blue boxes).

In [5], [6] the task is to predict if a patient will
remain cancer free for at least 24 months, investigated
with the NKC and PKC algorithms (Gaussian kernel).
The 81.9% of the 155 records are cancer free, so that
the learning task is significantly harder. A set of 3
rules was introduced from a simulated oncological
surgeon’s advice. An expert selected 3 regions on the
space determined by the SIZE and NODE features
that are supposed to lead to a recurrence of the cancer.
Their complete expressions can be found in [5] and
they are depicted in Fig. 6. However, we note that
both NKC and PKC rely on a discrete sampling of
the available knowledge sets, that in this experiment
was performed by considering the data points that
fall inside the supervised region [5], [6]. We approx-
imated the knowledge regions with boxes, designed
to include the same points on which NKC and PKC
sample the space. The accuracy of each algorithm is
measured by a leave-one-out procedure (TABLE 3).
For each experiment, a 10-fold cross-validation of the
training data was used to validate the classifiers (for a
total of 155 ·10 runs). Introducing prior knowledge by
means of the BOX kernel leads to the same results of
NKC and PKC. As a matter of fact, the misclassified
points falls in regions that are not affected by the
given knowledge. The significance of this result is in
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TABLE 3
The Leave-One-Out (LOO) accuracy on the WBCP

data in the setup of [5] and [6] (NKC and PKC).

Method LOO Accuracy

SVM 82.58%
NKC/PKC 90.97%

BOX 90.97%

(a) (b)

Fig. 7. (a) Examples of digits 3 and 8 from USPST - (b)
The region in which additional knowledge is provided to
distinguish between the two classes (18 blue pixels for
class 3, and and 24 red pixels for class 8).

the independence of the BOX kernel of the number of
points on which the knowledge is sampled.

4.3 Handwritten digit recognition

The USPST is a collection of 16x16 gray level pictures
of 2007 handwritten digits from the US Postal System.
In order to stress the importance of discrimination
capabilities of classifiers we focussed attention on the
problem of classifying confusing patterns. Here we
report classification results for patterns belonging to
the classes of 3 and 8. In order to emphasize the
differences between these classes, we studied rules to
express the concentration of pixels in different dis-
tinctive portions of the patterns. Instead of discussing
sound statistical solutions, we purposely followed the
same approach used by doctors in the previous exper-
iments. Hence, we simply indicated the characteristic
regions that mostly distinguish the classes on the
basis of a quick inspection of the database. The rules
that we provided can be intuitively understood when
looking at Fig 7. The propositions are based on the
average intensity values (Int.) in the selected regions.

(Int. in the blue region (Fig. 7(b)) ≥ 220) ⇒ 3
(Int. in the red region (Fig. 7(b)) ≤ 160) ⇒ 8.

We used a Gaussian kernel and randomly generated
20 data splits of training/validation and test instances,
where the former group was composed by 10 labeled
points only (4 of them were used to validate the
classifiers). The pair of Fig. 7 was included in all the
training sets. We compared all the described algo-
rithms, collecting the results in TABLE 4. The BOX
kernel compares favorably with the other methods,
even when only the box rules are provided to the
classifier. The performances are remarkable, since the
rules only can be applied to 46 out of 338 patterns.
SKSVM suffers from the removal of the training ex-
amples that fulfill the given rules, whereas in KSVM is
hard to find a good trade-off between rule fulfillment

TABLE 4
The average accuracy and standard deviation of 20

experiments on USPST 3vs8 for different algorithms.

Method Mean Accuracy Std

KSVM (rules only) 79.42% 0.28%
NKC/PKC (rules only) 77.38% 0.35%

BOX (rules only) 80.72% 0.35%
SVM 89.78% 5.35%

SKSVM 87.87% 5.03%
KSVM 89.57% 5.70%

NKC/PKC 90.72% 4.46%
BOX 92.55% 4.43%

and labeled points matching. In NKC and PKC, we
provided 100 additional training points that fall in
the knowledge regions, by adding random noise to
the pair of Fig. 7, and its accuracy is strictly related
to the quality of the sampling. This example shows
clearly that the critical choice of sampling a box of
dimension 256, which is bypassed by adopting the
proposed BOX kernel.

4.4 Text categorization

We used a data collection of approximately 20000
newsgroup documents, partitioned (nearly) evenly
across 20 different newsgroups. We selected the “by-
date” collection4 in which posts are sorted with re-
spect to the post date and that comes already divided
in training and test sets (11169 and 7505 documents,
respectively). The data is preprocessed to remove
newsgroup-identifying information, and then repre-
sented by means of the popular bag-of-word ap-
proach. Stop-words were removed and stemming was
performed using the Porter’s algorithm5, leading to a
vocabulary of 44989 words. A linear kernel has been
selected, as frequently suggested for this category of
problems [19].

We selected a small sets of words strongly related
to the main topic of each newsgroup. This basic
type of supervision can be easily provided by simply
looking at the newsgroup name (or at its manifest)
and it requires neither a deep insight on the con-
sidered topics nor reading the posts of the news-
group itself. Some newsgroups shares similar topics
(comp.*, rec.sport.*, talk.politics.*, rec.*, talk.religion.*-
alt.*-soc.*) and some of the listed words are shared
among them. See TABLE 5 for the full lists. Given
listk = {word1, word2, . . . , wordn(k)}, k = 1, . . . , 20,
that is the list of the n(k) words that are related to
the k-th newsgroup, the simplest form of box rule that
one can think is “if a word from the k-th list is found
in the current document, then it belongs to class k”.
More formally, for k = 1, . . . , 20 we have

count(wordi) ≥ 1⇒ k−th newsgroup, (12)
wordi ∈ listk, i = 1, . . . , n(k)

4. http://people.csail.mit.edu/jrennie/20Newsgroups/
5. http://tartarus.org/∼martin/PorterStemmer/

GRAYLEVEL >220 in blue region
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We selected a small sets of words strongly related
to the main topic of each newsgroup. This basic
type of supervision can be easily provided by simply
looking at the newsgroup name (or at its manifest)
and it requires neither a deep insight on the con-
sidered topics nor reading the posts of the news-
group itself. Some newsgroups shares similar topics
(comp.*, rec.sport.*, talk.politics.*, rec.*, talk.religion.*-
alt.*-soc.*) and some of the listed words are shared
among them. See TABLE 5 for the full lists. Given
listk = {word1, word2, . . . , wordn(k)}, k = 1, . . . , 20,
that is the list of the n(k) words that are related to
the k-th newsgroup, the simplest form of box rule that
one can think is “if a word from the k-th list is found
in the current document, then it belongs to class k”.
More formally, for k = 1, . . . , 20 we have

count(wordi) ≥ 1⇒ k−th newsgroup, (12)
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4. http://people.csail.mit.edu/jrennie/20Newsgroups/
5. http://tartarus.org/∼martin/PorterStemmer/

GRAYLEVEL <160 in red region
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Example 3.4 TEXT CLASSIFICATION FOR NON-TAXONOMICAL CATEGORIES

Let us consider the problem of classifying a book collection. In addition to their content, we may possess
a prior knowledge on logic attributes that represent the classes C := {cj ∈ {F, T} , j = 1, . . . , p}. In
general, one might be interested in going beyond taxonomical schemes and could be willing to express the
knowledge by first-order logic (FOL). For instance, we might think of a book collection in which we know
that there is a relation �� between any two books x and y whenever they are written by the same author
a(·). In addition you might have some information on the relations on the book categories, like if a book
deals with numerical analysis (c1) and neural networks (c2) then it deals with machine learning (c3). In
addition, if a book deals with machine learning than it is a book in the category of artificial intelligence
(c4). This can be stated by

i. ∀x∀y x �� y ⇔ a(x) = a(y)

ii. ∀x c1(x) ∧ c2(x)⇒ c3(x)

iii ∀x c3(x)⇒ c4(x).

Notice that the first constraint operates on only two points of X , whereas the others are active over all the
input space X . Unlike the other examples, in this case the prior knowledge is not directly expressed by a
set C of real-valued functions. However, as shown in Section 7, FOL constraints can be converted into a
set C of real-valued functions, which means that the theory developed in this paper can profitably be used
also for expressing constraints by formalisms different with respect to the one prescribed in the general
statement.

Example 3.5 RANKING IN INFORMATION RETRIEVAL

We assume that a function r : X → IR is used to rank documents and that its values are conditioned
to a number of rules constructed on the basis of the document category. Let c1(x) be the predicate to
express whether x is a popular topic, c2(x) to state whether x deals with a scientific topic, c3(x) to indicate
whether x is a news, and c4(x) to indicate whether x talks about discoveries on cancer. We could be
willing to represent the following prior knowledge by using a formalism similar to the example on text
classification:

∀x∀y c1(x) ∧ c2(x) ∧ ¬c3(x) ∧ c3(y) ∧ ¬c4(y)⇒ r(x) > r(y)

∀x∀y c4(y) ∧ ¬c4(x)⇒ r(y) > r(x).

These rules state that popular scientific topics that are not news are ranked higher than any news, unless
they are on cancer discovery that, on the opposite, are ranked higher than any other document.

Example 3.6 PROBABILITY DENSITY ESTIMATION

Suppose we want to devise a learning algoritm to estimate the probability density f(x) of a given dis-
tribution. In addition to a collection of examples coming from the probability distribution, we want to
incorporate the constraints f(x) ≥ 0 and

�
X f(x)dx = 1. This is an instance of the class of constraints

given in 1.
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Example 2 OPTICAL FLOW

In computer vision, the classic problem of determining the optical flow consists of finding smooth

solution of the velocity field under the constraint that the brightness of any point in the movement

pattern is constant. The smoothness of the velocity field can be expressed by choosing a differential

operator like the gradient or the Laplacian according to the general norm 1. For instance, if u(x, y)
and v(x, y) denote the component of the velocity, we can choose to minimize
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under the constraint
∂E

∂x
u +

∂E

∂y
v +

∂E

∂t
= 0

which comes from imposing that the brightness of a particular point E(x, y, t) is constant. The prob-

lem is classically solved by converting the above constraint into a penalty term so as to determine a

soft-constraining optimization (Horn and Schunck (1981)). A number of other relevant problems in

the field of computer vision can be effectively be approached within the framework of variational cal-

culus (see e.g. Bertero et al. (1988)). More advanced solutions might arise from imposing additional

constraints from the real-world while maintaining the idea of working with parsimonious agents.

3.1 Learning from examples

The classic framework of supervised learning from examples is a trivial instance of learning from

constraints. We distinguish regression and classification. Let y be the target function, where y(x) ∈
IRn

for regression, and y(x) ∈ {−1,+1}n
for classification. Interestingly, this classic framework can

be reproduced either by universal or existential constraints. For example, in regression in X can be

imposed by ∀x ∈ X : f(x) = y(x), while the classification can be translated by f(x)�y(x)−ν ≥ 0,

where star is the element-wise product. Learning from examples can also be reproduced by the trivial

case of existential quantifier with void existential set. In this case, we show that we reduce to an iso-

perimentric variational problems. Let � ∈ IR+
and θ ∈ IRn : θ ≥ 0 be. For any task indexed by

j ∈ INn, we establish a link with the problem of finding f(·) such that

χj(f) ∼ �− θj � yj(x)− fj(x) �p≥ 0, (6)

where p = 2 for regression (r) and p = ∞ for classification (c). Notice that for classification, if we

assume that supx∈X f(x) ≤ 1 then

�− θj � yj(x)− fj(x) �∞ = �− θj � yj(x)(1− yj(x)fj(x) �∞
= �− θj � 1− yj(x)fj(x) �∞≥ 0,

which yields

inf
x∈X

(fj(x) · yj(x)) ≥ 1− �

θj
. (7)

As will be shown is Section ??, the continuous target is transformed into a sequence of desired

values, so as we end up in the classic framework of learning from examples. An interesting extension

of this classic framework arises in classification tasks when replacing supervised pairs (xκ, yκ) with

labelled information that involve sets instead of points.

Let {Xκ ⊂ X , κ ∈ IN �} be a collection of labelled sets so as the training set becomes

EL =
�
(Xκ, yκ) ∈ 2X × Y, κ ∈ IN �

�
. (8)
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LEARNING FROM CONSTRAINTS: FOUNDATIONS

Of course, Xκ can degenerate to a single example and when this happens we return to classic learning

from examples. We can express the constraint by using the characteristic function cXκ(·) as follows

χj(κ)(f) ∼ ∀x ∈ X : (θj · fj(x) · yj(x)− �) · cXκ(x) ≥ 0. (9)

For example, if we restrict the attention to boxes, we can choose

cXκ(x) =
d�

i=1

[sign(xi − bi)− sign(xi − ai)] .

An in-depth analysis for this case is given in Gori and Melacci (2010a).

3.2 Equivalence of constraints and logic structure

Of course, different constraints can represent the same admissible functional space FP . For example,

u-constraints

φ̌1(f, y) = �− |y − f | ≥ 0
φ̌2(f, y) = �2 − (y − f)2 ≥ 0

where f is a real function, define the same FP . This motivates the following definition.

Definition 8 Let F1
P ,F2

P be the admissible spaces of φ1 and φ2, respectively. Then we define the
relation φ1 ∼ φ2 if and only if F1

P = F2
P .

This notion can be extended directly to pairs of collection of constraints, that is C1 ∼ C2 whenever

there exists a bijection C1
ν→ C2 such that ∀φ1 ∈ C1 ν(φ1) ∼ φ1. Of course, ∼ is an equivalent

relation and the same definition can be given for e-constraints.

Proposition 9 Let (u)s
+ := 2(u)+ − 1 be. Then there exists IR

P1,2→ IR+ such that

φ1 ∼ φ2 ⇔ ∀f ∈ F : (φ1(f))s
+ = (φ2(f))s

+ ⇔ ∀f ∈ F : ∃P1,2(f) : φ1(f) = P1,2(f) · φ2(f)

Proof The proposition φ1 ∼ φ2 ⇔ ∀f ∈ F : (φ1(f))s
+ = (φ2(f))s

+ derives straightforwardly from

the fact that (·)s
+ does not change the sign of φ1 and φ2. Now, let us define

P1,2(f) :=
�

φ1(f)/φ2(f) if φ2(f) �= 0
p if φ2(f) = 0

where p ∈ IR+ − {0}. Since φ1 ∼ φ2 We have that ∀f ∈ F : φ1(f)/φ2(f) > 0, that is IR
P1,2→ IR+

.

We have that ∀f ∈ F : φ1(f) = P1,2(f) · φ2(f) holds true. In the case φ2(f) �= 0 this comes

directly from the definition of P1,2. In the case φ2(f) = 0, since φ1 ∼ φ2 we have φ1(f) = 0, which

completes the proof.

It is of remarkable interest the case in which � P1,2 �F< 1. We just notice that this covers the essence

of equivalence, since the condition expresses the general notion of boundedness of P1,2. Whenever

two constraints φ1 and φ2 are related by φ1 = P1,2φ2 and � P1,2 �F< 1 holds true then we express

the equivalence by φ1
�·�∼ . In the above example associated with supervised learning, we can choose

P1,2(f) :=
�

(�− |y − f |)(�2 − (y − f)2) if f �= y
1/� if f = y

13
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LEARNING FROM CONSTRAINTS: FOUNDATIONS

along with the systematic construction of a theory of learning from constraints, that is still based on
the unifying parsimony principle, is the main distinguishing feature of this paper. A different, yet
related, interpretation is given in (Gori (2009a)), where the classic concept of regularization, based
on smoothness issues, is enriched with constraints. This view leads to think of a more powerful
approach of facing the ill-position of learning from examples bysemantic-based regularization, which
deepened in this paper. It is shown that the theory incorporates results on kernel machines which learn
from propositional descriptions of the training set (Maclin et al. (2007)) and that it gives a general
framework for recent studies on bridging logic and kernel machines (Diligenti et al. (2010d,c)). The
preliminary studies on convex constraints (Gori and Melacci (2010b)) are also presented at the light of
the general framework herein proposed. Examples of constraints come out naturally regardless of the
context: one might want to enforce the probabilistic normalization of a set of functions modeling the
classification, the probabilistic normalization of a density function, or might want to impose coherent
decisions of the classifiers acting on different views of the same pattern (Melacci et al. (2009)). The
expressive power of constraints become more significant when dealing with a specific problem, like
vision, control, text classification, ranking in hyper-textual environment, and prediction of the stock
market (see also Tab. 1).

3. Knowledge-based parsimonious agents

We think of an intelligent agent acting in the perceptual space X ⊂ IRd as a vectorial function
f = [f1, . . . , fn]�, where ∀j ∈ INn : fj ∈ W k,p belongs to a Sobolev space, that is to the subset
of Lp whose functions fj admit weak derivatives up to some order k and have a finite Lp norm. The
functions fj : j = 1, . . . , n, are referred to as the “tasks” of the agent. We can introduce a norm on f
by the pair (P, γ), where P is a pseudo-differential operator (Taylor (1981)) and γ ∈ IRn is a vector
of non-negative coordinates 3. We are interested in parsimonious agents aimed at keeping small the
functional

E(f) = � f �2
Pγ

=
n�

j=1

γj < Pfj , Pfj >, (1)

when interacting in their own environment. This is a generalization to multi-task learning of what
has been proposed in (Poggio and Girosi (1989)) for regularization networks. The definition is
rooted in Tikhonov’s regularization theory (Tikhonov et al. (1977)) and related studies on spline func-
tions (Wahba (1975, 1990)). As pointed out in Section 2, in physics, this is a generalized version of the
Dirichlet integral and it plays a fundamental role in many classic physic laws. In the case of n = 1,
the operator P has also been related to the notion of kernel (Schoelkopf and Smola (1998); Smola
et al. (1998)), while in (Evgenious et al. (1999)) there are some relevant links between regularization
networks and kernel machines. An additional connection was pointed out in Gori (2009b) on the ef-
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Semi-norm in Sobolev spaces
  ... parsimony principle in learning ...

The above discussion on differential operators can be enriched at least into different directions. First,
we can replace the ak coefficients with functions ak(·) : X → IR and, second, we can consider an infinite
number of differential terms (m → ∞) We mainly consider Sobolev spaces Fk which is composed of
functions whose k-th derivatives belong to L2. In the following we deal with maps C∞(X ⊂ IRd) →
C∞(X ⊂ IRd) We can measure smoothness by using pseudo-differential operators. Let F be a Sobolev
space where we introduce the following operator P .

Definition 3.1 A linear partial differential m-order operator on IRd is a map C∞(X) → C∞(X) of the
form

Pu(x) =
�

|α|≤m

aα(x)Dα
xu(x)

where aα ∈ C∞(X),

Dα
x =

�
1
i

�|α| ∂α1

∂xα1
1

. . .
∂αd

∂xαd
d

and |α| = α1 + . . . + αd is a multi-index.

We are interested in the special case in which aα(x) is constant, that is aα(x) = aα. It is easy to see
that the previous examples are pseudo-differential operators. We can associate any p(x, ∂x) : H → H

with p(x, ω) =
�

|α|≤m aα(x)(iω)α, which is polynomial in ω. This turns out to be useful when using the
Fourier transform and is referred to as the symbol of the operator. The notion of symbol is central to pseudo-
differential operators, since their transformation of a function can be thought of as the inverse Fourier
transform of the symbol in the Fourier variable times the Fourier transform of the function itself. There
are some interesting differences with respect to ordinary differential operators. First, pseudo-differential
operators are not local, a property that is met by differential operators, for which the smoothness of Pu

holds in the same set in which u is smooth. The idea behind locality is that one only needs the value of
a function in the a neighborhood if a point to compute the effect of the operator. The ⊙ operator is just
an example of non-locality. Even if u(x) is smooth in x, there are cases in which, ⊙u(x) is not. Second,
the inverse of a pseudo-differential operator is another pseudo-differential operator, whereas this does not
hold for differential operators. There is a nice interpretation using the Fourier transform of this property.
For any differential operator the symbol is a polynomial, whose inverse is not a polynomial. On the op-
posite, the symbol of pseudo-differential operators is a function and, its inverse, is still a function in the
same space. Since < Pu, Pu >=< u,P �Pu >=< u,Lu > , it turns out to be interesting to discuss the
positiveness of L = P �P which, of course, is Hermitian.

4 Necessary conditions

Here we discuss necessary conditions to address the proposed problem in the classic case expressed by
equation (1) and in the formulation based on constrained optimization in which the objective function
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Representation (hard constraints)

LEARNING FROM CONSTRAINTS: FOUNDATIONS

Theorem 13 REPRESENTER THEOREM FOR u-CONSTRAINTS
Let us consider the problem formulated by Definition 5 with the m universally quantified bilateral
constraints of holonomic type10

∀x ∈ Xi ⊂ X : φi(x, f(x), y(x)) = 0, i ∈ INm (20)

P(χ) =
m�

i=1

χi.

Let us assume that ∀x ∈ X we can find a permutation of n functions11 such that the Jacobian is not
singular, that is

D(φ1, . . . ,φm)
D(f1, . . . , fm)

�= 0. (21)

Then there exist a set of functions λi = Λi ◦ f, i ∈ INm such that any weak extreme of functional (1)
under the constraints (20) is also a weak extreme of12

L(f) =� f �2P,γ +
m�

i=1

�

X
λi(x) · φi(x, f(x), y(x))dx. (22)

Any extreme f satisfies the Euler-Lagrange equations

Lf(x) +
m�

i=1

λi(x) ·∇fφi(x, f(x), y(x)) = 0, (23)

where L := [γ1L, . . . , γnL]� and ∇f is the gradient w.r.t. f . Moreover, if g is a Green function of
operator L, under given boundary conditions on ∂X , then f admits the representation

f = −g ⊗
m�

i=1

λi∇fφi + fP , (24)

where fP ∈ KerP = KerL. Finally, if the constraints (20) are convex then the solutions of (23) are
global minima, and the uniqueness holds whenever KerP = {0}, which also yields fP = 0 .

Proof See the appendix.

Remark 14 BOUNDARY CONDITIONS
Notice that the Green function g exists only under appropriate boundary conditions on ∂X . For ex-
ample, if L =

�∞
κ=0(−1)κσ2κ/(2κκ!)(∂2κ/∂x2κ) and we impose on the border of X = IRd that

f(x) → 0 as � x �→ ∞ then the Green functions is the Gaussian g(x) = 1/(
√

2πσ)exp(−x2/σ2).
Notice that in the case L = ∇2, the linear kernels, are not consistent with the same boundary condi-
tions in X = IRd unless we take the trivial solution g = 0 when F = C∞. When keeping the same
vanishing boundary conditions, possible non-trivial solutions can be found in the space of piecewise
linear functions. Related studies on this issue can be found in (Schoelkopf and Smola (1998); Smola
et al. (1998)), while some additional connections are established in the Appendix II.

10. These constraint may include conditions on the border ∂X .
11. Without limitation of generality, they are numbered using the first m < n functions.
12. The choice of the sign of the second right-hand term follows the convention used in kernel machines.
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Two remarkable “examples”

Optical flow

GORI AND MELACCI

Example 2 OPTICAL FLOW

In computer vision, the classic problem of determining the optical flow consists of finding smooth

solution of the velocity field under the constraint that the brightness of any point in the movement

pattern is constant. The smoothness of the velocity field can be expressed by choosing a differential

operator like the gradient or the Laplacian according to the general norm 1. For instance, if u(x, y)
and v(x, y) denote the component of the velocity, we can choose to minimize
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= 0

which comes from imposing that the brightness of a particular point E(x, y, t) is constant. The prob-

lem is classically solved by converting the above constraint into a penalty term so as to determine a

soft-constraining optimization (Horn and Schunck (1981)). A number of other relevant problems in

the field of computer vision can be effectively be approached within the framework of variational cal-

culus (see e.g. Bertero et al. (1988)). More advanced solutions might arise from imposing additional

constraints from the real-world while maintaining the idea of working with parsimonious agents.

3.1 Learning from examples

The classic framework of supervised learning from examples is a trivial instance of learning from

constraints. We distinguish regression and classification. Let y be the target function, where y(x) ∈
IRn

for regression, and y(x) ∈ {−1,+1}n
for classification. Interestingly, this classic framework can

be reproduced either by universal or existential constraints. For example, in regression in X can be

imposed by ∀x ∈ X : f(x) = y(x), while the classification can be translated by f(x)�y(x)−ν ≥ 0,

where star is the element-wise product. Learning from examples can also be reproduced by the trivial

case of existential quantifier with void existential set. In this case, we show that we reduce to an iso-

perimentric variational problems. Let � ∈ IR+
and θ ∈ IRn : θ ≥ 0 be. For any task indexed by

j ∈ INn, we establish a link with the problem of finding f(·) such that

χj(f) ∼ �− θj � yj(x)− fj(x) �p≥ 0, (6)

where p = 2 for regression (r) and p = ∞ for classification (c). Notice that for classification, if we

assume that supx∈X f(x) ≤ 1 then

�− θj � yj(x)− fj(x) �∞ = �− θj � yj(x)(1− yj(x)fj(x) �∞
= �− θj � 1− yj(x)fj(x) �∞≥ 0,

which yields

inf
x∈X

(fj(x) · yj(x)) ≥ 1− �

θj
. (7)

As will be shown is Section ??, the continuous target is transformed into a sequence of desired

values, so as we end up in the classic framework of learning from examples. An interesting extension

of this classic framework arises in classification tasks when replacing supervised pairs (xκ, yκ) with

labelled information that involve sets instead of points.

Let {Xκ ⊂ X , κ ∈ IN �} be a collection of labelled sets so as the training set becomes

EL =
�
(Xκ, yκ) ∈ 2X × Y, κ ∈ IN �

�
. (8)
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Where do kernel machines come from ...

finite convolution 

reaction of the constraint 



When kernels arise from regularization operators ...

Green function / “plain kernel”
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for any x ∈ Xκ of the set w.r.t. the target yκ. Interest-

ingly, the classic representer theorem at the basis of

kernel machines can nicely be extended to encompass

this more general supervised framework.

Theorem 2.1: Let f ∈ F = W k,2 be and let g(·, ·) be

the Green’s function of L > 0. Then R[·] admits the

unique weak minimum f�, which can be expressed

by

f�(x) = − 1
λ

�

κ∈IN�t

�

X
g(x, ζ)V �

f (yκ, f�(ζ))·p(ζ)·cXκ(ζ)dζ

where V �
f = ∂V/∂f .

Proof: See Appendix A

We notice that the assumption L > 0 has been

used mostly for the sake of simplicity, but it is not

strictly needed for the uniqueness of the solution. It

is proven that uniqueness arises also in cases in which

KerL �= {0}, when imposing boundary conditions on

the values of f on ∂X [13]. Whenever it exists, the

Green function of the regularization operator L is a

(plain kernels). Examples of regularization operators

that give rise to popular kernels are, amongst others,

L =
�∞

κ=0(−1)κ σ2κ

κ!2κ∇2κ, which is associated with the

Gaussian kernel [7] and L = (σ2I − ∇2)n, which

gives rise to the Sobolev spline [11], while there is

no regularization operator for linear and polynomial

kernels 1.

The following result gives a representation for f�.

Theorem 2.2: Let p ∈ C(IR, IR+
o ). Then there exists

ζκ ∈ X, κ ∈ IN �t such that when posing

ακ := −V �
f (yκ, f�(ζκ))p(ζκ)/λ (2)

we have

f� =
�

κ∈N�t

ακβ(Xκ, x), (3)

where

β(Xκ, x) :=
�

X
g(x, ς)cXκ(ς)dς (4)

Proof: See Appendix A

Notice that if we separate the contributions coming

from points and sets the above representer theorem

can be re-written as f�(x) =
�

κ∈IN�
ακg(xκ, x) +�

h∈IN�X
αhβ(Xh, x). The representation given by (3)

is interesting but, unfortunately, it cannot be directly

used for the formalization of learning algorithms

because of two reasons: First, f� is given in terms

of parameters ακ which depend themselves on f�.

Second, ακ depend on the probability distribution p(·)
that is typically unknown. A significant step ahead in

the design of learning algorithms is due to the intro-

duction of the hypothesis of sign consistency, according

1. This can immediately realized when focussing on one-

dimensional problems. For examples, the space invariant Green

function of the operator L = d4/dx4 satisfying the condition of

being even, is g(x) = |x|3. While the successive derivation of g(·)
produces the distributional singularity for x = 0, the same does

not hold for polynomials.

to which the sign of f� does not change in any Xκ

κ ∈ IN �C , along with some additional hypothesis in

the probability distribution p(·).
Theorem 2.3: Let V (yκ, f(x)) = max {0, 1− yκf(x)}

be and let us assume that the sign consistency hypoth-

esis holds true. Let ∀x ∈ Xκ, κ ∈ IN �X : p(x) ≡
1/vol(Xκ) and ∀xκ, κ = 1, � : p(x) = δ(x − xκ).
Moreover, let S� ⊂ IN � and S�X ⊂ IN �X be the

indexes of the support vectors and the support sets,

respectively. Then

f�(x) =
�

κ∈S�∪S�X

ακβ(Xκ, x), (5)

where ακ ∈ [0, 1/λ].
Proof: See Appendix A

When unsupervised data are available, we can go

one step further, by removing the assumption of uni-

form probability distribution. A reasonable hypothe-

sis is that the probability density is an expansion in

the plain kernel centered on the unsupervised data.

Interestingly, if we keep the hypothesis of sign con-

sistency and still work with the hinge loss function,

the general solution dictated by Theorem 2.1 still gives

rise to a a solution given in terms of a new kind box

kernel.

Theorem 2.4: Let V (yκ, f(x)) = max {0, 1− yκf(x)}
be and let us assume that the sign consistency hypothe-

sis holds true. Let SS := S�∪S�X and let SU ⊂ IN �U be.

Moreover, let us assume that we are given a collection

of �U unsupervised data, whose probability distribu-

tion can be represented by p(x) =
�

h∈N�U
πhg(x, ζ),

under proper selection of πh. Then

f�(x) =
�

(κ,h)∈SS×S�U

ακ,hγ(Xκ, xh, x), (6)

where

γ(Xκ, xh, x) =
�

X
g(x, ζ) · g(ζ, xh) · cXκ(ζ)dζ (7)

and ακ,h ∈ [0, 1πh/λ].
Proof: See Appendix A

In order to get an in-depth understanding of the

index defined by equation( 1), it is useful to see

the effect of measuring the loss within the multi-

intervals on the basis of the average value taken

by f(·), so as to introduce an index which is in-

dependent of the data probability distribution. Let

mXκ(f) := (
�
Xκ

f(x)dx)/vol(Xκ) be the average value

of f over Xκ. Of course, when Xκ = {xκ} we get

mXκ(f) = f(xκ). Instead of using R[f ] (Eq. 1) we can

replace it with

Rm[f ] :=
�

κ∈IN�t

V (yh, mXκ(f)) + λ�Pf�2. (8)

Notice that Rm[·] (Eq. 8) has a remarkable meaning in

itself, and, differently from Eq. (1), its minimization is

a more affordable variational problem, which can be
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the effect of measuring the loss within the multi-

intervals on the basis of the average value taken

by f(·), so as to introduce an index which is in-

dependent of the data probability distribution. Let

mXκ(f) := (
�
Xκ

f(x)dx)/vol(Xκ) be the average value

of f over Xκ. Of course, when Xκ = {xκ} we get

mXκ(f) = f(xκ). Instead of using R[f ] (Eq. 1) we can

replace it with

Rm[f ] :=
�

κ∈IN�t

V (yh, mXκ(f)) + λ�Pf�2. (8)

Notice that Rm[·] (Eq. 8) has a remarkable meaning in

itself, and, differently from Eq. (1), its minimization is

a more affordable variational problem, which can be

Gaussian kernel

Sobolev spline kernel

Polynomial kernels don’t come from regularization operators!
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New Kernels (from prior knowledge) 
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quantization operator

what you partially miss in RKHS



Algorithmic issues 

kernel-based representation

fixed-point iteration algorithms

LEARNING FROM CONSTRAINTS: FOUNDATIONS

Theorem 13 REPRESENTER THEOREM FOR u-CONSTRAINTS
Let us consider the problem formulated by Definition 5 with the m universally quantified bilateral
constraints of holonomic type10

∀x ∈ Xi ⊂ X : φi(x, f(x)) = 0, i ∈ INm (20)

P(χ) =
m�

i=1

χi.

Let us assume that ∀x ∈ X we can find a permutation of n functions11 such that the Jacobian is not
singular, that is

D(φ1, . . . ,φm)
D(f1, . . . , fm)

�= 0. (21)

Then there exist a set of functions λi = Λi ◦ f, i ∈ INm such that any weak extreme of functional (1)
under the constraints (20) is also a weak extreme of12

L(f) =� f �2P,γ +
m�

i=1

�

X
λi(x) · φi(x, f(x))dx. (22)

Any extreme f� satisfies the Euler-Lagrange equations

Lf�(x) +
m�

i=1

λi(x) ·∇fφi(x, f�(x)) = 0, (23)

where L := [γ1L, . . . , γnL]� and ∇f is the gradient w.r.t. f . Moreover, if g is a Green function of
operator L, under given boundary conditions on ∂X , then f admits the representation

f� =
m�

i=1

g ⊗ ωi(f�) (24)

where ωi(f�) =
�m

i=1 g(·)⊗ (−λi∇fφi(·, f�(·))). Finally, if the constraints (20) are convex then the
solutions of (23) are global minima, and the uniqueness holds whenever KerP = {0}, which also
yields fP = 0 .

Proof See the appendix.

Remark 14 BOUNDARY CONDITIONS
Notice that the Green function g exists only under appropriate boundary conditions on ∂X . For ex-
ample, if L =

�∞
κ=0(−1)κσ2κ/(2κκ!)(∂2κ/∂x2κ) and we impose on the border of X = IRd that

f(x) → 0 as � x �→ ∞ then the Green functions is the Gaussian g(x) = 1/(
√

2πσ)exp(−x2/σ2).
Notice that in the case L = ∇2, the linear kernels, are not consistent with the same boundary condi-
tions in X = IRd unless we take the trivial solution g = 0 when F = C∞. When keeping the same
vanishing boundary conditions, possible non-trivial solutions can be found in the space of piecewise
linear functions. Related studies on this issue can be found in (Schoelkopf and Smola (1998); Smola
et al. (1998)), while some additional connections are established in the Appendix II.

10. These constraint may include conditions on the border ∂X .
11. Without limitation of generality, they are numbered using the first m < n functions.
12. The choice of the sign of the second right-hand term follows the convention used in kernel machines.

21

kernel machines math & 
algorithmic apparatus

i. more accurate description of reality
ii. simplified math and the birth of 

Putting things in context by 
unsupervised data



Reduction to kernels

• Learning from examples

• Learning from sets (propositions) - box kernels

• Linear constraints

• Quadratic constraints (Fredholm linear equation)

• Poly constraints via auxiliary functions & quadratic 
constraints

direct computation of the constraint reaction
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Case studies

Where one faces the problem of  
determining the constraint reactions ...
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Preliminary “walk-through”

• diagnosis, prognosis in medicine (Pima Indian 
Diabetes Dataset, Wisconsin Breast Cancer 
Prognosis)

• handwritten chars (USPST)

• tagging (Flickr)

• asset allocation in finance 
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Multi-intervals

box kernels!

sign consistency uniform weight reaction

Back to kernels (under some hyp)!

the case of soft-constraints ...

constraint reaction
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Box kernels
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Learning with Box Kernels

that must be paired with
�
erfc(z)dz = z · erfc(z) −

e−z2
(
√
π)−1 to complete the proof.

Example. In Figure 1 we report an example of
K(Xi,Xj) where Xj = {xj} and Xi is progressively re-
duced until it degenerates to a point. Now we discuss
some properties of the box kernel using the example of
Figure 2 as reference, that shows the separation hyper-
plane of a box-kernel-based SVM, trained with labeled
points, labeled box regions, or both of them, respec-
tively. Note that the separation boundary between
the two classes becomes nonlinear when introducing
the labeled regions, and it is correctly modeled by the
box kernel. The rightmost picture shows the effect of
increasing the parameter λ. A soft margin estimate
is allowed within the available box regions, increasing
the robustness to noisy supervisions.
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Figure 1. The K(Xi,Xj) function (g is Gaussian) where
Xj = {xj} and Xi is defined from [−6,−4] to [6, 4] and
it is progressively reduced until it degenerates to a point
(left to right). The last picture corresponds to a Gaussian
kernel.

In Figure 3 not all the training points are coherent with
the knowledge sets. The averaging effect of the box
kernel within each labeled box region, introduced in
Eq. 1 by the mXj (f) term, allows the classifier to han-
dle this situation. As a matter of fact, SVMs exploits
a hinge loss for the labeled entities, and the (absolute)
max value of f is larger inside the region in which we
find the incoherency, so that its average still matches
the corresponding box label. The regularized nature
of the learning problem does not allow the value of f
to explode to infinity.

 

 

−1.5

−1

−0.5

0

0.5

1

Figure 3. The separation boundary of an SVM with box
kernel when a labeled point (+) is incoherent with the label
of the leftmost blue-dotted box region. The level curves of
the function f are reported on the right.

4. Experimental Results

We ran a variety of experiments that are based on
real-world scenarios: diagnosing diabetes, predicting
breast cancer survival time, and recognizing handwrit-
ten digits. Before going into further details, we shortly
describe the related algorithms.

In Fung et al. (2002) the authors formalize a con-
strained linear optimization problem that leads to
a linear classification function (KSVM, Knowledge-
based SVM). Many real-world problems are better ap-
proached with a nonlinear estimate, and the KSVM
framework was extended in this direction (Fung et al.,
2003). However, the nonlinear “kernelization” is not a
transparent procedure that can be easily related to the
original knowledge, making the approach less practi-
cal. Le et al. (2006) proposed a simpler alternative,
that we will refer to as SKSVM (Simpler KSVM). An
SVM is trained from labeled points only, excluding
the ones that fall in the (arbitrary shaped) labeled re-
gions, and, at test time, its prediction is post processed
to match the available knowledge. This approach is
not able to generalize from prior knowledge only. A
more recent idea was proposed by Mangasarian &Wild
(2008); Mangasarian et al. (2009). A kernel-based clas-
sifier is extended to model labeled nonlinear space re-
gions by the discretization of the supervised space on a
preselected subset of points. This criterion was applied
to a linear programming SVM (Mangasarian & Wild,
2008) (NKC, Nonlinear Knowledge-based Classifier)
and to a proximal nonlinear classifier (Mangasarian
et al., 2009) (PKC, Proximal Knowledge-based Clas-
sifier). The main drawbacks of these works is that it
is unclear how to sample the regions on which prior
knowledge is given. A considerable amount of points
may be needed, especially in high dimensions.

We compared an SVM biased by a (Gaussian) box
kernel (BOX) with the described algorithms, strictly
following the experimental setup proposed by the re-
spective authors. Finally, the last experiment includes
a wider comparison in a newly proposed setting. In
each experiment, the features that are not involved
in the available rules are bounded by their min, max
values over the entire data collection. Classifier pa-
rameters were validated by ranging them over dense
grid of values in [10−5, 105].

Diabetes. The Pima Indian Diabets (Frank & Asun-
cion, 2010) dataset is composed by the results of 8
medical tests for 768 female patients at least 21 years
old of Pima Indian heritage. The task is to predict
whether the patient shows signs of diabetes. KSVMs
have been recently evaluated in this data (Kunapuli
et al., 2010). In such work, two rules from the Na-

Gaussian (plain kernel)
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B - Examples of box kernels
Proposition A.4: If g is a Gaussian kernel, g(x,y) =

exp(−0.5 �x− y�2 σ−2), then

β(Xj ,x) =
1

vol(Xj)

d�

i=1

(
√

2πσ)
2

(erfc(
xi − bi

j√
2σ

)− erfc(
xi − ai

j√
2σ

))

Proof: If we indicate with 1(·) the Heaviside step

function, we get

ĉXj (x) =
1

vol(Xj)
·

d�

i=1

�
1(xi − ai

j)− 1(xi − bi
j)

�
.

We have

β(Xj ,x) · vol(Xj) =
�

X
e
�x−ζ�2

−2σ2

d�

i=1

�
1(ζi − ai

j)− 1(ζi − bi
j)

�
dζ

=
d�

i=1

� +∞

−∞
e

(xi−ζi)2

−2σ2
�
1(ζi − ai

j)− 1(ζi − bi
j)

�
dζi

=
d�

i=1

(
� +∞

ai
j

e
(xi−ζi)2

−2σ2 dζi −
� +∞

bi
j

e
(xi−ζi)2

−2σ2 dζi)

=
d�

i=1

(
√

2πσ)
2

(erfc(
xi − bi

j√
2σ

)− erfc(
xi − ai

j√
2σ

))

where erfc(x) = 2√
π

� +∞
z e−t2dt is the complementary

error function.

Proposition A.5: If g is a Gaussian kernel then

K(Xh,Xk) = qh,k ·
d�

i=1

�
Ψ(bi

h, bi
k)−Ψ(ai

h, bi
k) −Ψ(bi

h, ai
k) + Ψ(ai

h, ai
k)

�

where

Ψ(a, b) :=
a− b√

2σ
erfc(

a− b√
2σ

)− 1√
π

e−
(a−b)2

2σ2

qh,k :=
(
√

πσ2)d

vol(Xκ)vol(Xh)
.

Proof: Given ph,k := (
√

2πσ)d

2dvol(Xκ)vol(Xh) we have

K(Xh,Xk) :=
�

Xk

β(Xh,x)
vol(Xκ)

dx

= ph,k

�

Xk

d�

i=1

(erfc(
xi − bi

h√
2σ

)− erfc(
xi − ai

h√
2σ

))dx

= ph,k

d�

i=1

(
� bi

k

ai
k

erfc(
xi − bi

h√
2σ

)dxi −
� bi

k

ai
k

erfc(
xi − ai

h√
2σ

)dxi)

that must be paired with
�

erfc(z)dz = z · erfc(z) −
e−z2

(
√

π)−1
to complete the proof.

Proposition A.6: If g is a linear kernel, g(x,y) =
xT y, then

β(Xj ,x) =
1
2

d�

i=1

xi
�
ai

j + bi
j

�
=< x,

aj + bj

2
>

Proof: By definition of vol(Xj) =
�d

i=1 |ai
j− bi

j | we

have

β(Xj ,x) =
�

X
ζT x · ĉXj (ζ)dζ

�

X
ζT x

�d
i=1

�
1(ζi − ai

j)− 1(ζi − bi
j)

�

vol(Xj)
dζ

=
�

X
ζT x

d�

i=1

�
1(ζi − ai

j)− 1(ζi − bi
j)

�

|ai
j − bi

j |
dζ

=
�

X

�
d�

i=1

ζixi

�
d�

t=1

�
1(ζt − at

j)− 1(ζt − bt
j)

�

|at
j − bt

j |
dζ

=
�

X

�
d�

i=1

ζixi
d�

t=1

�
1(ζt − at

j)− 1(ζt − bt
j)

�

|at
j − bt

j |

�
dζ

=
d�

i=1

�

X
ζixi

d�

t=1

�
1(ζt − at

j)− 1(ζt − bt
j)

�

|at
j − bt

j |
dζ =

=
d�

i=1

� bi
j

ai
j

ζixi

|ai
j − bi

j |
dζi

d�

t=1,t<>i

�

X

�
1(ζt − at

j)− 1(ζt − bt
j)

�

|at
j − bt

j |
dζt

=
d�

i=1

� bi
j

ai
j

ζixi

|ai
j − bi

j |
dζi

=
1
2

d�

i=1

xi
(bi

j)2 − (ai
j)2

|ai
j − bi

j |

from which the thesis follows.

Proposition A.7: If g is a linear kernel then

K(Xh,Xk) =
1
4

d�

i=1

�
ai

h + bi
h

� �
ai

k + bi
k

�
=<

ah + bh

2
,
ak + bk

2
>

Proof: Given vol(Xj) =
�d

i=1 |ai
j − bi

j |, we have

K(Xh,Xk) :=
�

Xk

β(Xh,x)
vol(Xκ)

dx

=
�

Xk

1
2

d�

i=1

xi
�
ai

h + bi
h

�
�d

t=1 |at
k − bt

k|
dx

=
1
2

d�

i=1

�

Xk

xi
�
ai

h + bi
h

�
�d

t=1 |at
k − bt

k|
dx

=
1
2

d�

i=1

� bi
k

ai
k

xi
�
ai

h + bi
h

�

|ai
k − bi

k|
dxi

d�

t=1,t<>i

� bt
k

at
k

1
|at

k − bt
k|

dxt

=
1
4

d�

i=1

�
(bi

k)2 − (ai
k)2

� �
ai

h + bi
h

�

|ai
k − bi

k|

and the proof follows.

Proposition A.8: If g is a polynomial kernel of degree

2, g(x,y) = (xT y + 1)2, then

β(Xj ,x) = 1 + 2 · βlin(Xj ,x) +
d�

i=1

(xi)2
((ai

j)2 + ai
jb

i
j + (bi

j)2)
3

+

d�

i=1,t=i+1

xixt
(bi

j + ai
j)(bt

j + at
j)

2

degeneration to the Gaussian 

plain kernel (Gaussian) + multi-interval knowledge =  box kernel

response to the “rectangular impulse”
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(a) (b) (c) (d) (e)

Fig. 2. An SVM trained on synthetic data using the (Gaussian) box kernel. (a) A 2-class dataset (red crosses are
samples of class +1, blue circles belongs to class -1) with additional supervision on 3 box regions (blue dashed
lines for class +1 and red solid lines for class -1); (b) the separation boundary when only labeled points are used;
(c) when using labeled box regions only; (d) when both labeled points and regions are used; (e) the previous
setting with a larger λ.

(a) (b) (c)

(d) (e) (f)

Fig. 5. An SVM trained on the synthetic data of Fig. 2 using a linear box kernel (a,b,c) and a polynomial box
kernel (d,e,f). (a,d) The separation boundary when only labeled points are used; (b,e) when using labeled box
regions only; (c,f) when both labeled points and regions are used.
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Fig. 4. The percentage of labeled training instances
(points, boxes) that are support vectors/sets in the
expansion of f for different Gaussian kernel widths σ
on the data of Fig. 2 (λ fixed).

polynomial box kernels is reported in (Fig. 5).

4 EXPERIMENTAL RESULTS
We ran a variety of experiments in different contexts,

including medical diagnosis and prognosis, handwrit-

ten digit recognition, and categorization of text docu-

ments to give insights on the potential improvements

deriving from using box kernels. In the first two

experiments (diabetes diagnosis, breast cancer prog-

nosis), we compared a support vector machine based

on a Gaussian box kernel with related algorithms,

strictly following the experimental setup proposed

in the literature. Another experiment addressed the

discrimination capabilities required in handwritten

digit recognition experiment and, finally, we used a

linear box kernel to incorporate propositional rules

for a text categorization problem. In this section we

indicate with BOX a Support Vector Machine classifier

based on a box kernel, whereas the notation SVM

refers to a Support Vector Machine based on plain

kernels. In each experiment, the features that are not

involved in the propositions are bounded all over the

data collection.

4.1 Diabetes diagnosis

The Pima Indian Diabets [17] dataset is composed of

the results of 8 medical tests for 768 female patients at

least 21 years old of Pima Indian heritage. The task is

to predict whether the patient shows signs of diabetes.

KSVMs have been recently evaluated in this data [18].
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samples of class +1, blue circles belongs to class -1) with additional supervision on 3 box regions (blue dashed
lines for class +1 and red solid lines for class -1); (b) the separation boundary when only labeled points are used;
(c) when using labeled box regions only; (d) when both labeled points and regions are used; (e) the previous
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Fig. 5. An SVM trained on the synthetic data of Fig. 2 using a linear box kernel (a,b,c) and a polynomial box
kernel (d,e,f). (a,d) The separation boundary when only labeled points are used; (b,e) when using labeled box
regions only; (c,f) when both labeled points and regions are used.
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ten digit recognition, and categorization of text docu-

ments to give insights on the potential improvements

deriving from using box kernels. In the first two

experiments (diabetes diagnosis, breast cancer prog-

nosis), we compared a support vector machine based

on a Gaussian box kernel with related algorithms,

strictly following the experimental setup proposed

in the literature. Another experiment addressed the

discrimination capabilities required in handwritten

digit recognition experiment and, finally, we used a

linear box kernel to incorporate propositional rules

for a text categorization problem. In this section we

indicate with BOX a Support Vector Machine classifier

based on a box kernel, whereas the notation SVM

refers to a Support Vector Machine based on plain

kernels. In each experiment, the features that are not

involved in the propositions are bounded all over the

data collection.

4.1 Diabetes diagnosis

The Pima Indian Diabets [17] dataset is composed of

the results of 8 medical tests for 768 female patients at

least 21 years old of Pima Indian heritage. The task is

to predict whether the patient shows signs of diabetes.

KSVMs have been recently evaluated in this data [18].
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Fig. 2. An SVM trained on synthetic data using the (Gaussian) box kernel. (a) A 2-class dataset (red crosses are
samples of class +1, blue circles belongs to class -1) with additional supervision on 3 box regions (blue dashed
lines for class +1 and red solid lines for class -1); (b) the separation boundary when only labeled points are used;
(c) when using labeled box regions only; (d) when both labeled points and regions are used; (e) the previous
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Fig. 5. An SVM trained on the synthetic data of Fig. 2 using a linear box kernel (a,b,c) and a polynomial box
kernel (d,e,f). (a,d) The separation boundary when only labeled points are used; (b,e) when using labeled box
regions only; (c,f) when both labeled points and regions are used.
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We ran a variety of experiments in different contexts,

including medical diagnosis and prognosis, handwrit-

ten digit recognition, and categorization of text docu-

ments to give insights on the potential improvements

deriving from using box kernels. In the first two

experiments (diabetes diagnosis, breast cancer prog-

nosis), we compared a support vector machine based

on a Gaussian box kernel with related algorithms,

strictly following the experimental setup proposed

in the literature. Another experiment addressed the

discrimination capabilities required in handwritten

digit recognition experiment and, finally, we used a

linear box kernel to incorporate propositional rules

for a text categorization problem. In this section we

indicate with BOX a Support Vector Machine classifier

based on a box kernel, whereas the notation SVM

refers to a Support Vector Machine based on plain

kernels. In each experiment, the features that are not

involved in the propositions are bounded all over the

data collection.

4.1 Diabetes diagnosis

The Pima Indian Diabets [17] dataset is composed of

the results of 8 medical tests for 768 female patients at
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to predict whether the patient shows signs of diabetes.

KSVMs have been recently evaluated in this data [18].
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Perceptual and logic constraints ...

?

Back to kernels (soft-constraints)
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The effect of forcing logic constraints
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Figure 1: Benchmark 1: classification accuracy for different labeled and unla-
beled datasets when using or not using the constraints in training.

5.2 Benchmark 2: 7 classes, 4 clauses

This experiment aims at measuring the effectiveness of the two-stage learning
process to optimized the cost function. In particular, it consists of a multi-
class classification task with 7 different classes (A,B, C, D, E, F,G), which are
known (a-priori) to be according to a hierarchy defined by the following clauses:
a ∧ b ⇒ c, d ∧ e ⇒ f , c ∧ f ⇒ g and a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g. The patterns for
each class lay in the following rectangles:

A {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
B {(x, y) : 1 ≤ x ≤ 3, 0 ≤ y ≤ 2}
C {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2}
D {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}
E {(x, y) : 1 ≤ x ≤ 3, 0 ≤ y ≤ 1}
F {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}
G {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}

During different runs of the experiment, the training set size has been increased
from 14 to 203 examples. Similarly, the unsupervised data has varied 0 and
140 patterns. In order to factor out the sampling noise, the accuracy numbers
have been averaged over 20 different samples of the supervised, unsupervised
and test patterns.

In a first set of experiments, the kernel machine weights are optimized using
the full cost function (including the constraint portion: λv > 0), since the first
iteration of the learning process. In a second set of experiments, the constraints
are instead introduced at a later stage as described in section 4. Figure 4
compares the classification accuracy obtained in the two sets of experiments.
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Figure 4: Benchmark 2: the effect of the two-stage training process.

are: ¬a ∨ ¬g and ¬b ∨ ¬g. Another set of 17 clauses models the complete in-
clusion of the area covered by one class within the areas covered by the union
of a set of other classes, e.g.: g ⇒ c ∨ d (the union of C and D contains G),
g ⇒ c ∨ e, a⇒ f ∨ h ∨ l and b ⇒ f ∨ h ∨ l. Finally, the close-world assumption
clause was added to state that each pattern must belong to at least one class:
a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h ∨ i ∨ l ∨m. The overall set of logic rules is therefore
composed by 45 elements.

In our experimental setting, the patterns for each class are assumed to be
uniformly distributed on a rectangle, as shown in table 2.

Figure 6 reports the obtained results, averaged over 10 different runs. The
introduction of the constraints is beneficial with an improvement in the classi-
fication accuracy between 2% and 5%. This experiment also shows how impor-
tant is the unsupervised data in the learning process: using more unsupervised
patterns during training significantly increases the classification accuracy.

5.5 Benchmark 5: 3 classes, 2 clauses

This experiment aims at analyzing the effects on the classification accuracy due
to the use of the logic constraints, when varying the dimension of the feature
space. In particular, it consists of a multi-class classification task with 3 different
classes (A,B, C), which are known (a-priori) to be arranged according to a
hierarchy defined by the clauses a ∧ b ⇒ c and a ∨ b ∨ c. The patterns for each
class lay in a hyper-rectangle in IRn, where the dimensionality n was varied
in {3, 7, 10}. Given an uniform sampling over the hyper-rectangles, a higher
dimensional input space corresponds to sparser training data for a fixed number
of labeled patterns. This is an effect of the well known curse-of-dimensionality,

21



WU - 6/1/2012

Constraint Check and
Perceptual Logic

check of a new constraint

Facing the intractability coming from formal logic formal  

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Support Constraint Machines

beyond formal logic, since it takes place on a wider

notion of environments in which logic clauses and su-

pervised examples complement each other.

2. Learning from constraints

We think of an intelligent agent acting in the per-

ceptual space X ⊂ IRd
as a vectorial f unction f =

[f1, . . . , fn]�, where ∀j ∈ INn : fj ∈ W k,p belongs to

a Sobolev space, that is to the subset of Lp whose func-

tions fj admit weak derivatives up to some order k and

have a finite Lp norm. The functions fj : j = 1, . . . , n,

are referred to as the “tasks” of the agent. We can in-

troduce a norm on f by the pair (P, γ), where P is a

pseudo-differential operator and γ ∈ IRn
is a vector of

non-negative coordinates

R(f) = � f �2Pγ
=

n�

j=1

γj < Pfj , Pfj >, (1)

which is used to determine smooth solutions accord-

ing to the parsimony principle. This is a general-

ization to multi-task learning of what has been pro-

posed in ((Poggio & Girosi, 1989)) for regulariza-

tion networks. The more general perspective sug-

gests considering objects as entities picked up in

X p,� =
�

i≤p

�
|αi|≤pi Xα1,i × Xα2,i , . . . ,Xαi,i where

αi = {α1,i, . . . ,αi,i} ∈ P(p, i) is any of the pi =

p(p − 1) . . . (p − i + 1) (falling factorial power of p)

i-length sequences without repetition of p elements.

In this paper, however, we restrict the analysis to the

case in which the objects are simply points of a vector

space. We propose to build an interaction amongst dif-

ferent tasks by introducing constraints of the following

types 1

∀x ∈ X : φi(x, y(x), f(x)) = 0, i =∈ INm

where y(x) ∈ IR is a target function, which is typically

defined only on samples of the probability distribution.

This makes it possible to include the classic supervised

learning, since pairs of labelled examples turns out to

be constraints given on a finite set of points. Notice

that one can always reduce a collection of constraints

to a single equivalent constraint. For this reason, in the

reminder of the paper, most of the analysis will focus

on single constraints. In some cases the constraints can

be profitably relaxed and the index to be minimized

becomes

R(f) = � f �2Pγ
+C · 1� < Ξ(x, y(x), f(x)) > . (2)

1We restrict the analysis to universally-quantified con-
straints, but a related analysis can be carried out when
involving existential quantifiers.

Function Ξ penalizes how we depart from the perfect

fulfillment of the constraint φ. If φ(x, y(x), f(x)) ≥
0 then we can simply set Ξ(x, y(x), f(x) :=

φ(x, y(x), f(x)), but in general we need to set the

penalty properly. For example, the check of a

bilateral constraint can be carried out by posing

Ξ(x, y(x), f(x) := φ2(x, y(x), f(x)).

Of course, different constraints can represent the same

admissible functional space Fφ. For example, u-

constraints φ̌1(f, y) = � − |y − f | ≥ 0 and φ̌2(f, y) =

�2− (y− f)2 ≥ 0 where f is a real function, define the

same Fφ. This motivates the following definition.

Definition 2.1 Let Fφ1 ,Fφ2 be the admissible spaces
of φ1 and φ2, respectively. Then we define the relation
φ1 ∼ φ2 if and only if Fφ1 = Fφ2 .

This notion can be extended directly to pairs of col-

lection of constraints, that is C1 ∼ C2 whenever there

exists a bijection C1
ν→ C2 such that ∀φ1 ∈ C1 ν(φ1) ∼

φ1. Of course, ∼ is an equivalent relation. We can

immediately see that φ1 ∼ φ2 ⇔ ∀f ∈ F : ∃P1,2(f) :

φ1(f) = P1,2(f) · φ2(f). Notice that if we denote by

[φ] a generic representative of ∼, than the quotient set

Fφ/ ∼ can be constructed by

Fφ/ ∼= {φ ∈ Fφ : φ = P (f) · [φ](f)} ,

being P any positive real function. Of course we

can generate infinite constraints equivalent to [φ].

For example, if [φ(f, y) = � − |y − f |], the choice

P (f) = 1 + f2 gives rise to the equivalent constraint

φ(f, y) = (1 + f2) · (� − |y − f |). The quotient set of

any single constraint φi suggests the presence of a logic
structure, which makes it possible to devise reasoning

mechanisms with the representative of the relation ∼.

Moreover, the following notion of entailment naturally

arises:

Definition 2.2 Let Fφ =
�
f ∈ F : φ(f) ≥ 0

�
. A

constraint φ is entailed by C = {φi, i ∈ INm}, that is
C |= φ, if FC ⊂ Fφ.

Of course, for any constraint φ that can be formally

deduced from the collection C (premises), we have

C |= φ. It is easy to see that the entailment operator

states invariant conditions in the class of equivalent

constraints, that is if C ∼ C�, C |= φ, and φ ∼ φ�

then C� |= φ�. The entailment operator also meets the

classic chain rule, that is if C1 |= C2 and C2 |= C3 then

C1 |= C3.

3. SCM for constraint checking

A dramatic simplification of the problem of learning

from constraints derives from sampling the input space
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.

References

Giaquinta, M. and Hildebrand, S. Calculus of Varia-
tions I, volume 1. Springer, 1996.

Klement, E.P., Mesiar, R., and Pap, E. Triangular
Norms. Kluwer Academic Publisher, 2000.

Poggio, Tomaso and Girosi, Federico. A theory of net-
works for approximation and learning. Technical re-
port, MIT, 1989.

Raedt, L. De, Frasconi, P., Kersting, K., and (Eds),
S.H. Muggleton. Probabilistic Inductive Logic Pro-
gramming, volume 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
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some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Support Constraint Machines

beyond formal logic, since it takes place on a wider

notion of environments in which logic clauses and su-

pervised examples complement each other.

2. Learning from constraints

We think of an intelligent agent acting in the per-

ceptual space X ⊂ IRd
as a vectorial f unction f =

[f1, . . . , fn]�, where ∀j ∈ INn : fj ∈ W k,p belongs to

a Sobolev space, that is to the subset of Lp whose func-

tions fj admit weak derivatives up to some order k and

have a finite Lp norm. The functions fj : j = 1, . . . , n,

are referred to as the “tasks” of the agent. We can in-

troduce a norm on f by the pair (P, γ), where P is a

pseudo-differential operator and γ ∈ IRn
is a vector of

non-negative coordinates

R(f) = � f �2Pγ
=

n�

j=1

γj < Pfj , Pfj >, (1)

which is used to determine smooth solutions accord-

ing to the parsimony principle. This is a general-

ization to multi-task learning of what has been pro-

posed in ((Poggio & Girosi, 1989)) for regulariza-

tion networks. The more general perspective sug-

gests considering objects as entities picked up in

X p,� =
�

i≤p

�
|αi|≤pi Xα1,i × Xα2,i , . . . ,Xαi,i where

αi = {α1,i, . . . ,αi,i} ∈ P(p, i) is any of the pi =

p(p − 1) . . . (p − i + 1) (falling factorial power of p)

i-length sequences without repetition of p elements.

In this paper, however, we restrict the analysis to the

case in which the objects are simply points of a vector

space. We propose to build an interaction amongst dif-

ferent tasks by introducing constraints of the following

types 1

∀x ∈ X : φi(x, y(x), f(x)) = 0, i =∈ INm

where y(x) ∈ IR is a target function, which is typically

defined only on samples of the probability distribution.

This makes it possible to include the classic supervised

learning, since pairs of labelled examples turns out to

be constraints given on a finite set of points. Notice

that one can always reduce a collection of constraints

to a single equivalent constraint. For this reason, in the

reminder of the paper, most of the analysis will focus

on single constraints. In some cases the constraints can

be profitably relaxed and the index to be minimized

becomes

R(f) = � f �2Pγ
+C · 1� < Ξ(x, y(x), f(x)) > . (2)

1We restrict the analysis to universally-quantified con-
straints, but a related analysis can be carried out when
involving existential quantifiers.

Function Ξ penalizes how we depart from the perfect

fulfillment of the constraint φ. If φ(x, y(x), f(x)) ≥
0 then we can simply set Ξ(x, y(x), f(x) :=

φ(x, y(x), f(x)), but in general we need to set the

penalty properly. For example, the check of a

bilateral constraint can be carried out by posing

Ξ(x, y(x), f(x) := φ2(x, y(x), f(x)).

Of course, different constraints can represent the same

admissible functional space Fφ. For example, u-

constraints φ̌1(f, y) = � − |y − f | ≥ 0 and φ̌2(f, y) =

�2− (y− f)2 ≥ 0 where f is a real function, define the

same Fφ. This motivates the following definition.

Definition 2.1 Let Fφ1 ,Fφ2 be the admissible spaces
of φ1 and φ2, respectively. Then we define the relation
φ1 ∼ φ2 if and only if Fφ1 = Fφ2 .

This notion can be extended directly to pairs of col-

lection of constraints, that is C1 ∼ C2 whenever there

exists a bijection C1
ν→ C2 such that ∀φ1 ∈ C1 ν(φ1) ∼

φ1. Of course, ∼ is an equivalent relation. We can

immediately see that φ1 ∼ φ2 ⇔ ∀f ∈ F : ∃P1,2(f) :

φ1(f) = P1,2(f) · φ2(f). Notice that if we denote by

[φ] a generic representative of ∼, than the quotient set

Fφ/ ∼ can be constructed by

Fφ/ ∼= {φ ∈ Fφ : φ = P (f) · [φ](f)} ,

being P any positive real function. Of course we

can generate infinite constraints equivalent to [φ].

For example, if [φ(f, y) = � − |y − f |], the choice

P (f) = 1 + f2 gives rise to the equivalent constraint

φ(f, y) = (1 + f2) · (� − |y − f |). The quotient set of

any single constraint φi suggests the presence of a logic
structure, which makes it possible to devise reasoning

mechanisms with the representative of the relation ∼.

Moreover, the following notion of entailment naturally

arises:

Definition 2.2 Let Fφ =
�
f ∈ F : φ(f) ≥ 0

�
. A

constraint φ is entailed by C = {φi, i ∈ INm}, that is
C |= φ, if FC ⊂ Fφ.

Of course, for any constraint φ that can be formally

deduced from the collection C (premises), we have

C |= φ. It is easy to see that the entailment operator

states invariant conditions in the class of equivalent

constraints, that is if C ∼ C�, C |= φ, and φ ∼ φ�

then C� |= φ�. The entailment operator also meets the

classic chain rule, that is if C1 |= C2 and C2 |= C3 then

C1 |= C3.

3. SCM for constraint checking

A dramatic simplification of the problem of learning

from constraints derives from sampling the input space
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Figure 2. Top row: the 4 classes in the data collection where a set of FOL constraints applies. The green dashed lines

shows the real boundaries of the classes. Middle row: the functions f1, f2, f3, f4 in SCMs that use labeled examples only,

SCLL. Bottom row: the functions f1, f2, f3, f4 in SCMs with FOL clauses, SCMFOL.
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Figure 3. The average accuracy (and standard deviation)

of the SCM classifier: using labeled examples only (SCLL),

using examples and FOL clauses (SCMFOL), using exam-

ples only and post processing the classifier output with the

FOL rules.

Given the original set of rules that constitutes our

Knowledge Base (KB) and that are fed to the clas-

sifier, we distinguish between two categories of logic

rules that can be deducted from the trained SCMFOL.

The first category includes the clauses that are related

to the geometry of the data distribution, and that, in

other words, are strictly connected to the topology of

the environment in which the agent operates, as the

ones of Eq. 9-11. The second category contains the

rules that can be logically deducted by analyzing the

FOL clauses that are available at hand. The classifier

should be able to learn both the categories of rules

even if not explicitly added to the knowledge base.

The mixed interaction of the labeled points and the

FOL clauses of the KB leads to an SCM agent that

can check whether a new clause holds true in our en-

vironment. Note that the checking process is not im-

plemented with a strict decision on the truth value of

Checking (logic) constraints 
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Figure 2. Top row: the 4 classes in the data collection where a set of FOL constraints applies. The green dashed lines

shows the real boundaries of the classes. Middle row: the functions f1, f2, f3, f4 in SCMs that use labeled examples only,

SCLL. Bottom row: the functions f1, f2, f3, f4 in SCMs with FOL clauses, SCMFOL.
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Figure 3. The average accuracy (and standard deviation)

of the SCM classifier: using labeled examples only (SCLL),

using examples and FOL clauses (SCMFOL), using exam-

ples only and post processing the classifier output with the

FOL rules.

Given the original set of rules that constitutes our

Knowledge Base (KB) and that are fed to the clas-

sifier, we distinguish between two categories of logic

rules that can be deducted from the trained SCMFOL.

The first category includes the clauses that are related

to the geometry of the data distribution, and that, in

other words, are strictly connected to the topology of

the environment in which the agent operates, as the

ones of Eq. 9-11. The second category contains the

rules that can be logically deducted by analyzing the

FOL clauses that are available at hand. The classifier

should be able to learn both the categories of rules

even if not explicitly added to the knowledge base.

The mixed interaction of the labeled points and the

FOL clauses of the KB leads to an SCM agent that

can check whether a new clause holds true in our en-

vironment. Note that the checking process is not im-

plemented with a strict decision on the truth value of

Checking (logic) constraints 
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Figure 3: The classification functions f1, f2(x) are plotted on the two rows, respectively. For each row,

the left picture shows the classification function of an SCM that uses labeled examples only, whereas the

right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the

real boundaries of the class. SCM with FOL clauses produces an output that is significantly closer to the

real class structure.
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Figure 4: The classification functions f3(x), f4 are plotted on the two rows, respectively. For each row,

the left picture shows the classification function of an SCM that uses labeled examples only, whereas the

right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the
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Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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tract compact information from the problem at hand.
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able to deduct all the other rules that are supported
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gree as the percentage of points for which they should
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problem are correctly marked with a significantly low
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ones that come from the environment configuration.
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This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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tract compact information from the problem at hand.
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hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.

References

Giaquinta, M. and Hildebrand, S. Calculus of Varia-
tions I, volume 1. Springer, 1996.

Klement, E.P., Mesiar, R., and Pap, E. Triangular
Norms. Kluwer Academic Publisher, 2000.

Poggio, Tomaso and Girosi, Federico. A theory of net-
works for approximation and learning. Technical re-
port, MIT, 1989.

Raedt, L. De, Frasconi, P., Kersting, K., and (Eds),
S.H. Muggleton. Probabilistic Inductive Logic Pro-
gramming, volume 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ∧ ¬a2(x) ⇒ a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ∧ ¬a3(x) ⇒ a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
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a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
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a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value

a1(x) ∧ a2(x) ⇒ a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)
a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
a1(x) ∧ a2(x) ⇒ a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ∨ a2(x) ⇒ a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ∧ a2(x) ⇒ ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
different categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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a3(x) ⇒ a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)

a1(x) ∨ a2(x) ∨ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)
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a1(x) ∧ a3(x) ⇒ a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ∧ a2(x) ⇒ a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ∧ a3(x) ⇒ a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) ⇒ a1(x) ∨ a2(x) ∨ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ∧ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ∨ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)
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some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst different entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint offers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
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Conclusions 
What’s next?

examples are constraints!

there is no need to distinguish 
perceptual and logic constraints 
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- don’t use all the info at once! 
  “easy-first” policy to select constraints?

- What if constraints are not available?

Developmental Agents

reformulation based on information-theoretic 
principles for feature generation, constraint selection 
and generation

Do you want know more?

visit https://sites.google.com/site/
semanticbasedregularization/

A s/w simulator will be released soon for public 
use. Drop me an e-mail (marco@dii.unisi.it) if 
you want to try it!

https://sites.google.com/site/semanticbasedregularization/
https://sites.google.com/site/semanticbasedregularization/
https://sites.google.com/site/semanticbasedregularization/
https://sites.google.com/site/semanticbasedregularization/

