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Motivation and Application

I Time Varying Parameter VARs have proven very insightful for
macro-policy analysis

yt = Xt�t + �t ; �t � N(0;��1)
�t = �t�1 + �t ; �t � N(0;
�1)

I Since the (global) �nancial crisis (GFC), things have changed
I some important variables are now at, or near, their bounds

I e.g., short-term interest rates; y1;t > 0
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Motivation (cont...)

I These bounds a¤ect parameter estimation and imply
non-linear models

I Another example we are working on
I bounds on exchange rates (Swiss franc); y2;t � e



The Features of The Models We Can Consider

I State space representations
I Non-linearity becomes relevant only in the last few years
I Large dimensions: e.g., VARs

I univariate non-linear methods not much use

I non-Gaussian, but �Gaussian-like�, errors



The Framework

I Measurement equation: p(yt j �t ; �), where
I yt is an n � 1 vector of observations
I �t is an m � 1 vector of latent states
I � denotes the set of model parameters

I State equation: p(�t j �t�1; �)
I Note 1: p(yt j �t ; �) may depend on previous observations
yt�1; yt�2; etc. and other covariates

I Note 2: it can be generalized to: p(yt j �t ; �t�1; : : : ; �t�l ; �)
or p(�t j �t�1; : : : ; �t�l ; �)



Estimation methods

Substantive progress for the linear Gaussian case:

I Kalman �lter-based algorithms: Carter and Kohn (1994),
Fruwirth-Schnatter (1994), de Jong and Shephard (1995) and
Durbin and Koopman (2002)

I Precision-based algorithms: Chan and Jeliazkov (2009) and
McCausland, Miller, and Pelletier (2011)

Non-linear Non-Gaussian case: a very active research area

Non-linearity in many states is tricky and we present an approach
for one important application



Non-linear Non-Gaussian case: Three Broad Approaches

Auxiliary mixture sampling:

I Use data augmentation and �nite Gaussian mixtures to
approximate non-Gaussian errors

I Applicable to various stochastic volatility models and state
space models for Poisson counts

I E¢ cient and easy to implement when applicable
I Typically model-speci�c



Three Broad Approaches (cont.)

Particle �lter:

I A Broad class of techniques that involves sequential
importance sampling and bootstrap resampling

I In the state space setting, it is used to evaluate the integrated
likelihood via sequential importance sampling and resampling

I Popular for estimating (non-linear) DSGE models
(Rubio-Ramirez and Fernandez-Villaverde, 2005;
Fernandez-Villaverde and Rubio-Ramirez, 2007)

I Very general approach, but computationally demanding
(computation time in days)



Three Broad Approaches (cont.)

Direct sampling via MH:

I Construct an approximation for the conditional density of the
states, which is used to generate candidate draws for the MH
step

I Common choice: Gaussian. e.g., Durbin and Koopman (1997),
Shephard and Pitt (1997), Strickland, Forbes, and Martin (2006),
etc.

I Di¢ culties:
I Obtaining the approximation and generating draws from it at
every iteration of the MCMC cycle is not trivial;

I MH acceptance rate can be quite low: Gaussian approximation
not su¢ ciently good

I Better approximation: HESSIAN method (McCausland, 2008).
I Highly e¢ cient, but currently only applicable to univariate
state models (i.e., m = 1)



Main Goals

1. Describe a fast routine to construct a Gaussian approximation
based on the precision-based method (as a by-product, also
get a t approximation)

2. Discuss two more e¢ cient sampling schemes for simulation of
the states: ARMH and collapsed sampler

3. Application: TVP-VAR with stochastic volatility and a
non-negativity restriction



Linear Gaussian Case

I For now, consider

yt = Xt�t + "t ;

�t = �t�t�1 + �t ;

for t = 1; : : : ;T , with�
"t
�t

�
� N

�
0;
�
��1t 0
0 
�1t

��
I �t and 
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I Let y = (y 01; : : : ; y

0
T )
0, � = (�01; : : : ; �

0
T )
0, and

� = f�0; f�tg; f�tg; f
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The Measurement Equation

Stacking the measurement equation over the T time periods:

y = X� + "; " � N(0;��1);

where " = ("01; : : : ; "
0
T )
0,

X =

264 X1 . . .
XT

375 ; ��1 =

264 �
�1
1

. . .
��1T

375
I log p(y j �; �) / �1

2 log j�
�1j � 1

2 (y � X�)
0�(y � X�)

I Note: � is a banded matrix



The State Equation

Stacking the state equation over the T time periods:0BBBBB@
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I Note K 0
K is a also a banded matrix



The Conditional Density for the States

I Therefore, the log conditional density ln p(� j y ; �) is

/ ln p(y j �; �) + ln p(� j �)

/ �1
2

�
�0(X 0�X + K 0
K )� � 2�0(X 0�y + K 0
K�0)

�
I In other words, (� j y ; �) � N(�̂;H�1); where

H = K 0
K + X 0�X ;

�̂ = H�1(K 0
K�0 + X 0�y)

I Since X 0�X is banded, it follows that H is also banded



What this process gives us ...

I At this point we have the mean, �̂, and precision, H
I Note that the precision, H, is a banded and sparse matrix



E¢ cient State Simulation for the Linear Gaussian Case

1. Compute H and obtain its Cholesky decomposition CH such
that H = C 0HCH

2. Sample u � N(0; ITm), and solve CHx = u for x by
back-substitution Then x � N(0;H�1)

3. Solve
C 0HCH �̂ = K

0
K�0 + X 0�y

for �̂ by forward- and back-substitution.

4. Finally return � = �̂ + x , so that � � N(�̂;H�1)

Key features:

I Can compute �̂ and CH fast
I Marginal cost of sampling from N(�̂;H�1) is low
I Built-in routines for sparse matrices in Matlab and Gauss
I Can also generate from t(�; �̂;H�1)



General State Space: Measurement Equation

Idea: approximate the log-likelihood ln p(y j �; �) via a
second-order Taylor expansion around ~� = (~�01; : : : ; ~�

0
T )
0:

ln p(y j �; �) � ln p(y j ~�; �) + (� � ~�)0f � 1
2
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/ �1
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�
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The Gaussian Approximation

I State equation: linear Gaussian as before (for simplicity):

ln p(� j �) / 1
2
ln j
j � 1

2
(� � �0)0K 0
K (� � �0)

I Combining this and the approximation for the measurement
equation:

ln p(� j y ; �) / ln p(y j �; �) + ln p(� j �)

� �1
2

�
�0(G + K 0
K )� � 2�0(f + G~� + K 0
K�0)

�
I That is, the approximating distribution is Gaussian with
precision H � G + K 0
K



What we need for the Gaussian approximation

I Expand the Taylor approximation at the mode �̂ = ~�
I This then gives us the precision matrix, H
I Note that, again, the precision, H, is a banded and sparse
matrix

I This structure will give us the necessary computational speed



We Investigate Three Sampling Schemes

I Sampling Scheme 1 (S1): MH with a Gaussian Proposal
I Expand the Taylor approximation at the mode �̂
I Generate candidates from q(� j y ; �) = N(�̂;H�1) or
q(� j y ; �) = t

�
�; �̂;H�1

�
for the MH step

I Sampling Scheme 2 (S2): ARMH with a Gaussian or t
Proposal

I Sampling Scheme 3 (S3): Collapsed Sampling with Cross
Entropy

I Used to draw � s p(� j y) then draw � s p(� j y ; �)



Sampling Scheme 1: MH with a Gaussian Proposal

I Expand the Taylor approximation at the mode �̂
I The mode can be found by Newton-Raphson method: given
the current location �(s), compute

�(s+1) = �(s) + H(�(s))�1
@

@�
log p(� j y ; �)

����
�=�(s)

= H(�(s))�1
�
f (�(s)) + G (�(s))�(s) + K 00

�
I Continue until jj�(s+1) � �(s)jj < �, set �̂ = �(s+1)
I Generate candidates from N(�̂;H�1) for the MH step



Accept-reject Sampling

I Target density: p(� j y ; �) / p(y j �; �)p(� j �);
proposal density q(� j y ; �)

I In the classic AR sampling, we need a constant c such that

p(y j �; �)p(� j �) � cq(� j y ; �);

for all � in the support of p(� j y ; �)
I Di¢ cult to obtain c e¢ ciently (especially when � is revised at
every iteration)



Accept-reject Metropolis-Hastings

I Combination of the classic accept-reject sampling with the
MH algorithm

I The ARMH relaxes the domination condition. When it is not
satis�ed, use MH

I Let
D = f� : p(y j �; �)p(� j �) � cq(� j y ; �)g;

and let Dc denote its complement



Sampling Scheme 2: ARMH with a Gaussian Proposal
1. AR step: Generate a draw �� � q(� j y ; �). Accept �� with
probability

�AR(�
� j y ; �) = min

�
1;
p(y j ��; �)p(�� j �)
cq(�� j y ; �)

�
:

Continue the process until a draw �� is accepted

2. MH-step: Given the current draw � and the proposal ��

I if � 2 D, set �MH(�; �� j y ; �) = 1;
I if � 2 Dc and �� 2 D, set

�MH(�; �
� j y ; �) = cq(� j y ; �)

p(y j �; �)p(� j �) ;

I if � 2 Dc and �� 2 Dc , set

�MH(�; �
� j y ; �) = min

�
1;
p(y j ��; �)p(�� j �)q(� j y ; �)
p(y j �; �)p(� j �)q(�� j y ; �)

�
Return �� with prob. �MH(�; �� j y ; �); otherwise return �



Another Way to Look at ARMH

I The AR step: a way to sample from

qAR(� j y ; �) = d�1�AR(� j y ; �)q(� j y ; �)

I By adjusting the original proposal density q(� j y ; �) by the
function �AR(� j y ; �), a better approximation is achieved

I In fact, we have

qAR(� j y ; �) =
�
p(y j �; �)p(� j �)=cd ; � 2 D;
q(� j y ; �)=d ; � 2 Dc ;

I Better approximation, but requires multiple draws in the AR
step



Joint Sampling of (�; �)

I Typically sample from p(� j y ; �) and p(� j y ; �) sequentially
I In some settings, � and � might be highly correlated
I Hence, sample (�; �) jointly by �rst drawing from p(� j y)
marginally of the states � followed by a draw from p(� j y ; �)

I Need a mechanism to generate candidates for �. Often use
random walk



Sampling Scheme 3: Collapsed Sampling with CE

I We propose an independence chain MH sampler instead
I The proposal density for �, denoted as q(� j y), is obtained
optimally: given a parametric family of densities P, use the
member in P that is the closest to the marginal density
p(� j y) in the Kullback-Leibler divergence or the cross-entropy
distance

I Generate �� � q(� j y), then evaluate the acceptance
probability (that involves estimating the integrated likelihood
via importance sampling)



Illustration: TVP-VAR with SV

I Write the VAR(l) in SUR form:

yt = xt�t + �t ; �t � N(0;��1t );

where xt = In 
 [1; y 0t�1; : : : ; y 0t�l ] and
�t = vec([�t : At1 : � � � : Atl ]0) is a k � 1 vector of VAR
coe¢ cients�with k = n2l + n

I Following Primiceri (2005), the time-varying precision matrix
�t is modeled as �t = L0tD

�1
t Lt , where

Dt = diag(eht1 ; : : : ; ehtn ) and

Lt =

0BBBBBB@
1 0 0 � � � 0
at21 1 0 � � � 0

at31 at32 1 � � �
...

...
...

...
. . .

...
atn1 atn2 � � � atn;n�1 1

1CCCCCCA



State Equations

I Let ht = (ht1; : : : ; htn)0 and at be the free elements of Lt , i.e.,
at = (at21; at31; at32; : : : ; atn;n�1)0

I Random walks for all the states:

�t = �t�1 + �t ; �t � N(0;
�1� );
ht = ht�1 + �t ; �t � N(0;
�1h );
at = at�1 + �t ; �t � N(0;
�1a );

where 
� , 
h, and 
a are all diagonal matrices



Inequality Restriction

I For the application, we have n = 3 variables: nominal interest
rate (3-month Tbill), in�ation rate (CPI) and GDP growth

I U.S. quarterly data from 1947 Q1 to 2011 Q2
I Impose the restriction that the nominal interest rate is always
non-negative (a model for computing liquidity trap)

I Assume yt1 � 0 is the nominal interest rate, and let xt1 be the
�rst row of xt

I The marginal distribution of yt1 is

(yt1 j�t ;�t) � N(xt1�t ; eht1)1(yt1 � 0)



Inequality Restriction (cont.)

I Hence,

P(yt1 � 0 j�t ;�t) = 1��
�
�xt1�t=e

1
2 ht1
�
= �

�
xt1�te

� 1
2 ht1
�
;

I The log-likelihood is ln p(y j�;�) =
PT
t=1 ln p(yt j�t ;�t);

where

ln p(yt j�t ; at ; ht) / �
1
2

nX
i=1

hti �
1
2
(yt � xt�t)0L0tD�1t Lt(yt � xt�t)

� ln�
�
xt1�te

� 1
2 ht1
�



Acceptance Rate and Running Time

Table: Acceptance rate (in %) and running time (in minutes; 50000
draws) of the three sampling schemes: MH (S1), ARMH (S2) and the
collapsed sampler with CE (S3).

scheme � h�1 h�2 �3 
� 
h 
a time
S1 68 28 35 59 � � � 23
S2 95 71 79 97 � � � 27
S3 98 69 79 97 62 58 76 182



Ine¢ ciency Factors
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Estimation Results: volatilities and correlations
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Figure: Evolution of the log-volatilities and correlations. Solid red line is
the estimated posterior mean under the unrestricted model. The solid
blue line is the estimated posterior mean under the restricted model with
5%-tile and 95%-tile, respectively.



Estimation Results: Impulse responses
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Figure: Impulse response to a credit shock under the unrestricted model
(red solid line) and the model with the inequality restrictions imposed
(blue solid line).



Concluding Remarks and Future Research

I Building on recent developments in precision-based
algorithms, we propose a practical approach to simulating the
states in a more general state space model

I A general approach that is much less computationally
demanding than PF

Future research:

I non-linear DSGE models - limitations to invertible states
I a state space model for bounded in�ation rate (already done)
I time-varying-parameter MA models (already done)
I non-linear factor models (wrestling with this and about to give
up)


