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Motivation and Application

» Time Varying Parameter VARs have proven very insightful for
macro-policy analysis
)/t = tht + 6t7 €t N(O, Z_l)
Ne =M1 +Ce G N(O,Q_l)
» Since the (global) financial crisis (GFC), things have changed

» some important variables are now at, or near, their bounds

> e.g., short-term interest rates; y; > 0
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Motivation (cont...)

» These bounds affect parameter estimation and imply
non-linear models

» Another example we are working on

» bounds on exchange rates (Swiss franc); y»; <€



The Features of The Models We Can Consider

v

State space representations

v

Non-linearity becomes relevant only in the last few years

v

Large dimensions: e.g., VARs

» univariate non-linear methods not much use

v

non-Gaussian, but ‘Gaussian-like’, errors



The Framework

» Measurement equation: p(y: | n;,0), where

> Y. is an n x 1 vector of observations
> 7, is an m x 1 vector of latent states
» 6 denotes the set of model parameters

» State equation: p(n; |1;_1,0)

» Note 1: p(y:|n,,0) may depend on previous observations
Yi—1, Yt—2, etc. and other covariates
» Note 2: it can be generalized to: p(v: | n¢, Me—1s- - Me—s, 0)

or p(n¢ [ Me—1,-++Me—150)



Estimation methods

Substantive progress for the linear Gaussian case:

» Kalman filter-based algorithms: Carter and Kohn (1994),
Fruwirth-Schnatter (1994), de Jong and Shephard (1995) and
Durbin and Koopman (2002)

» Precision-based algorithms: Chan and Jeliazkov (2009) and
McCausland, Miller, and Pelletier (2011)
Non-linear Non-Gaussian case: a very active research area

Non-linearity in many states is tricky and we present an approach
for one important application



Non-linear Non-Gaussian case: Three Broad Approaches

Auxiliary mixture sampling:
» Use data augmentation and finite Gaussian mixtures to
approximate non-Gaussian errors

» Applicable to various stochastic volatility models and state
space models for Poisson counts

» Efficient and easy to implement when applicable

» Typically model-specific



Three Broad Approaches (cont.)

Particle filter:

» A Broad class of techniques that involves sequential
importance sampling and bootstrap resampling

» In the state space setting, it is used to evaluate the integrated
likelihood via sequential importance sampling and resampling

» Popular for estimating (non-linear) DSGE models
(Rubio-Ramirez and Fernandez-Villaverde, 2005;
Fernandez-Villaverde and Rubio-Ramirez, 2007)

> Very general approach, but computationally demanding
(computation time in days)



Three Broad Approaches (cont.)

Direct sampling via MH:

>

Construct an approximation for the conditional density of the
states, which is used to generate candidate draws for the MH
step

Common choice: Gaussian. e.g., Durbin and Koopman (1997),
Shephard and Pitt (1997), Strickland, Forbes, and Martin (2006),
etc.

Difficulties:

> Obtaining the approximation and generating draws from it at
every iteration of the MCMC cycle is not trivial;

» MH acceptance rate can be quite low: Gaussian approximation
not sufficiently good

Better approximation: HESSIAN method (McCausland, 2008).

Highly efficient, but currently only applicable to univariate
state models (i.e., m=1)



Main Goals

1. Describe a fast routine to construct a Gaussian approximation
based on the precision-based method (as a by-product, also
get a t approximation)

2. Discuss two more efficient sampling schemes for simulation of
the states: ARMH and collapsed sampler

3. Application: TVP-VAR with stochastic volatility and a
non-negativity restriction



Linear Gaussian Case

» For now, consider
ye = Xeny + €,
ne =1 + (s

fort=1,..., T, with

(&)~n( (% an))

» X, and 2; are respectively the precision of ; and (,

» Lety =(y1,...,¥%) , n=(n},...,n7) and
0= {n07{rt}7{zt}7{9t}}



The Measurement Equation

Stacking the measurement equation over the T time periods:

y=Xn+e¢e, &~ N(O,Z’l),

Xt pap

> logp(y |0,m) < =5 log =71 — 3(y — Xn)'Z(y — Xn)
» Note: X is a banded matrix



The State Equation

Stacking the state equation over the T time periods:

Im UMt 119 C1
I Iy Mo 0 (o
_r3 Im UK] 0 + C3

—Ir Iy nr 0 CT

e, Kn=v+¢, (~N(@0,Q1)

» Let n° = K~14. Since |K| = 1, we have
| 8) o — log 19— X (1 — %Y K'QK (1 — 1P
og p(n]0) < —5 log || 2(n n°) (n—n"))

» Note K'QQK is a also a banded matrix



The Conditional Density for the States

» Therefore, the log conditional density Inp(n|y,#) is

o Inp(y|6,m) +Inp(n]|6)

1
x -3 [ (X'EX + K'QK)n — 21 (X'Ty + K'QKnP)]

> In other words, (1]|y,0) ~ N(f), H1), where

H=K'QK+ X'5£X,
f=HY(K'QKn® + X'Sy)

» Since X'YXX is banded, it follows that H is also banded



What this process gives us ...

> At this point we have the mean, 7, and precision, H

» Note that the precision, H, is a banded and sparse matrix



Efficient State Simulation for the Linear Gaussian Case

1. Compute H and obtain its Cholesky decomposition Cy such
that H = C/,Cy

2. Sample u ~ N(0, IT,), and solve Cyx = u for x by
back-substitution Then x ~ N(0, H™1)

3. Solve
Cl,Cyiy = K'QKn° + X'Ly
for 7) by forward- and back-substitution.
4. Finally return n = 7 + x, so that  ~ N(#, H™1)
Key features:

» Can compute 7 and Cy fast
» Marginal cost of sampling from N(7, H1) is low
» Built-in routines for sparse matrices in Matlab and Gauss

» Can also generate from t(v,#, H™!)



General State Space: Measurement Equation

Idea: approximate the log-likelihood In p(y | n,0) via a

second-order Taylor expansion around 7 = (7}, ..., 77)":
. . 1 . .
Inp(y [1,0) & Inp(y [9,0) + (n = 7)'f = 5(n =)' G(n - 7)

1 )
o =5 [/ Gn = 21/(f + Gi)] ,

f G 0 -~ 0
=[P e=| D 7T 0
fr 0 0 - Gr
0 0?
fr=—I 0 G =———1I 0
0= 5y nPUelne0)) s Ge= =g i p(velne0))

Ne="¢ Ne="t



The Gaussian Approximation

» State equation: linear Gaussian as before (for simplicity):

1 1
Inp(n]0) o 5 In|Qf = 5(n - ) K'QK(n —n°)

» Combining this and the approximation for the measurement
equation:

Inp(n|y,0) ocInp(y|n,0)+Inp(n|o)
1
N5 [17(G + K'QK)n — 21/ (f + Gij + K'QKn°)]

» That is, the approximating distribution is Gaussian with
precision H = G + K'QK



What we need for the Gaussian approximation

v

Expand the Taylor approximation at the mode 7) = 7

v

This then gives us the precision matrix, H

v

Note that, again, the precision, H, is a banded and sparse
matrix

v

This structure will give us the necessary computational speed



We Investigate Three Sampling Schemes

» Sampling Scheme 1 (S1): MH with a Gaussian Proposal

» Expand the Taylor approximation at the mode 7;
» Generate candidates from q(n|y,0) = N(#, H™1) or
q(nly,0) =t (1/,?7, H’l) for the MH step

» Sampling Scheme 2 (S2): ARMH with a Gaussian or t
Proposal

» Sampling Scheme 3 (S3): Collapsed Sampling with Cross
Entropy

» Used to draw 6 ~ p(@|y) then draw n ~ p(n |y, 6)



Sampling Scheme 1: MH with a Gaussian Proposal

v

Expand the Taylor approximation at the mode #

v

The mode can be found by Newton-Raphson method: given
the current location n(), compute

4 0
D =)+ H(n() 1377 log p(ny.0)

n=n(s)
= HEO)™ (F0) + 6 () + K°)

v

Continue until Hn(sﬂ) — 77(5)” <€ set fj = 77(5+1)
Generate candidates from N(#, H~!) for the MH step

v



Accept-reject Sampling

> Target density: p(n|y,0) o p(y |n,0)p(n|0);
proposal density g(n]y,0)
» In the classic AR sampling, we need a constant ¢ such that

p(yn,0)p(n|0) < cq(nly,0),

for all i in the support of p(n]y,0)

» Difficult to obtain c efficiently (especially when 6 is revised at
every iteration)



Accept-reject Metropolis-Hastings

» Combination of the classic accept-reject sampling with the
MH algorithm

» The ARMH relaxes the domination condition. When it is not
satisfied, use MH

> Let
D= {n:p(yln0)p(n|0) <cq(nly,0)},

and let D¢ denote its complement



Sampling Scheme 2: ARMH with a Gaussian Proposal

1. AR step: Generate a draw n* ~ q(n|y,0). Accept n* with
probability

‘ : ply |n*,0)p(n* | 0)
arr(n® |y, 0) = min {1, .
cq(n* |y, 0)
Continue the process until a draw n* is accepted
2. MH-step: Given the current draw 7 and the proposal n*

» ifneD, set ayu(n,n*|y,0) =1,
» if n € D and n* € D, set

. cq(nly,0)
onu (1,0 y,0) = —————
p(y [n,0)p(n|0)
> if n € D and n* € D¢, set

. — mind 1 PO 0)p( 10)a(nly.b)
(e [0) = min {1, ) )

Return n* with prob. anm(n, n* |y, 0); otherwise return n



Another Way to Look at ARMH

v

The AR step: a way to sample from

CIAR(U | Y, 9) = d_laAR(ﬁ | Y, 9)‘7(77 | Y, 0)

v

By adjusting the original proposal density q(n|y,6) by the
function aar(n|y,0), a better approximation is achieved

v

In fact, we have

ply|n,0)p(n|0)/cd, neD,
0) =
qar(n1y,9) { q(n|y,0)/d, n € D°,

v

Better approximation, but requires multiple draws in the AR
step



Joint Sampling of (6,7)

» Typically sample from p(n|y,0) and p(6|y,n) sequentially

> In some settings, 1 and 6 might be highly correlated

» Hence, sample (0,7) jointly by first drawing from p(@|y)
marginally of the states 7 followed by a draw from p(n |y, 6)

» Need a mechanism to generate candidates for . Often use
random walk



Sampling Scheme 3: Collapsed Sampling with CE

» We propose an independence chain MH sampler instead

» The proposal density for 6, denoted as q(6|y), is obtained
optimally: given a parametric family of densities P, use the
member in P that is the closest to the marginal density
p(@|y) in the Kullback-Leibler divergence or the cross-entropy
distance

» Generate 0" ~ q(0]y), then evaluate the acceptance
probability (that involves estimating the integrated likelihood
via importance sampling)



[llustration: TVP-VAR with SV
» Write the VAR(/) in SUR form:

Ve =Xy + €, €~ N(07z;1)7

where x; = I, ® [1,¥{_1,...,y;_,] and
B¢ = vec([py : Ae1 i -+ 2 Ay]’) is a k x 1 vector of VAR
coefficients'with k = n?/ + n

» Following Primiceri (2005), the time-varying precision matrix
Y ; is modeled as ¥; = L’thlLt, where
D, = diag(eM, ... en) and

1 0 0 0
ds21 1 0 0

Ly=1ap1 amm 1

dtnl  dtn2  c°* dtn,n—1 1



State Equations

» Let hy = (hs1, ..., hn)' and a; be the free elements of L, i.e.,
ar = (a1, 331, 3132, - - - Atnyn—1)’
» Random walks for all the states:

/81' = rBtfl + Ny My N(Oaﬂgl)a
he = he1 + &, & ~N(0,Q1),
ar=ar1+Cp o~ N(0,Q7Y),

where Qg, 5, and €, are all diagonal matrices



Inequality Restriction

» For the application, we have n = 3 variables: nominal interest
rate (3-month Thbill), inflation rate (CPI) and GDP growth

» U.S. quarterly data from 1947 Q1 to 2011 Q2

» Impose the restriction that the nominal interest rate is always
non-negative (a model for computing liquidity trap)

» Assume y;1 > 0 is the nominal interest rate, and let x;; be the
first row of x;

» The marginal distribution of y;; is

(ve1 | Bes Tt) ~ N(xe1 8, €")1(ye1 > 0)



Inequality Restriction (cont.)

» Hence,
P(yan > 0], T¢) = 1-@ <_Xt1/3t/e;hﬂ> — o (xﬂﬂte*%hn> |

» The log-likelihood is Inp(y | 5, X) = Z;l Inp(y: | B, Lt),
where
1< 1 _
Inp(ye | Bes ar, he) o< —5 Z hei — E(yt = xeB)' LiDi M Leye — xi )

24
i=1

“Ind <xt15te—%hﬂ)



Acceptance Rate and Running Time

Table: Acceptance rate (in %) and running time (in minutes; 50000
draws) of the three sampling schemes: MH (S1), ARMH (S2) and the
collapsed sampler with CE (S3).

scheme | 3 hi1 hy 3 Qp Qp Q] time
S1 68 28 35 59 - - - 23
S2 9% 71 79 97 - - - 27
S3 98 69 79 97 62 58 76| 182




Inefficiency Factors
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Estimation Results: volatilities and correlations
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Figure: Evolution of the log-volatilities and correlations. Solid red line is
the estimated posterior mean under the unrestricted model. The solid
blue line is the estimated posterior mean under the restricted model with

5%-tile and 95%-tile, respectively.



Estimation Results: Impulse responses
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Figure: Impulse response to a credit shock under the unrestricted model
(red solid line) and the model with the inequality restrictions imposed
(blue solid line).



Concluding Remarks and Future Research

» Building on recent developments in precision-based
algorithms, we propose a practical approach to simulating the
states in a more general state space model

» A general approach that is much less computationally
demanding than PF

Future research:

non-linear DSGE models - limitations to invertible states

v

> a state space model for bounded inflation rate (already done)

> time-varying-parameter MA models (already done)

v

non-linear factor models (wrestling with this and about to give
up)



