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Introduction and Motivation

Typcial study in medicine: 30-40 patients
→ Sample sizes are only sufficient if efficiently analyzed!

Problems in practice
I Incompleteness of observations;
I e.g. right-censored data

Observed are 2-types of data
I Complete observations, so called “survival times”
I Incomplete observations; last observed survival time or drop out of

study for other reasons
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Introduction and Motivation

Censoring

Source: Janssen

Markus Pauly (HHU Düsseldorf) Resampling methods for censored data Wien, 5 June 2014



Introduction and Motivation

Typcial study in medicine: 30-40 patients
→ Sample sizes are only sufficient if efficiently analyzed!

Problems in practice
I Incompleteness of observations;
I e.g. right-censored data

Observed are 2-types of data
I Complete observations, so called “survival times”
I Incomplete observations; last observed survival time or drop out of

study for other reasons

Example (“kidney data”):
Infection times in two groups of dialysis patients
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Introduction and Motivation

Different catheterization procedures:
percutaneous and surgical placements

Source: Klein/Moeschberger
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Introduction and Motivation

Infection times of dialysis patients

Markus Pauly (HHU Düsseldorf) Resampling methods for censored data Wien, 5 June 2014



Introduction and Motivation

Basic Survival Analysis 1-4

T ≥ 0 survival time
S(t) = P(T > t) survival function with ν-density f

Λ(t) =
∫ t

0 f (t)/S(t−)dν(t) cumulative hazard function
λ = f/S hazard rate
Interpretation (for smooth f )

P(T ∈ (t , t + ε]|T ≥ t) ≈ ελ(t).
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Introduction and Motivation

Basic Survival Analysis 2-4

Random Censoring by C ∼ G;
C and T independent
We only observe X := min(T ,C) and ∆ = 1{T ≤ C}

Estimator for S in this case:
⇒ Kaplan-Meier estimator Ŝ

Estimator for Λ:
⇒ Nelson-Aalen estimator Λ̂
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Introduction and Motivation

Basic Survival Analysis 3-4
“Easiest” case:

Let (Ti)i be i.i.d. discrete r.v.s; indep. from (Ci)i (also i.i.d.)
Define (e.g. failure rates in actuarial sciences)1

r(t) = P(T1 = t |T1 ≥ t) =
P(T1 = t)
P(T1 ≥ t)

Theorem:

Λ(t) = ΛT (t) =
∑

0≤s≤t

r(s) and S(t) = ST (t) =
∏

0≤s≤t

(1− r(s))

Kaplan-Meier and Nelson-Aalen estimators by plug-in:

r̂(s) =
number of failures at time s

number under risk at s−
1r(t) = 0 for P(T1 ≥ t) = 0

Markus Pauly (HHU Düsseldorf) Resampling methods for censored data Wien, 5 June 2014



Introduction and Motivation

Basic Survival Analysis 4-4

In counting process notation:
Define counting processes

N(t) =
n∑

i=1

1{Xi ≤ t ,∆i = 1}, Y (t) =
n∑

i=1

1{Xi ≥ t}

∆N(t) = N(t)− N(t−)

Nelson-Aalen and Kaplan-Meier are given by

Λ̂(t) =
∑

0≤s≤t

∆N(s)

Y (s)
and Ŝ(t) =

∏
0≤s≤t

(
1− ∆N(S)

Y (s)

)
Uncensored case: 1− Ŝ = e.d.f.
Properties (under reg): Consistent and asymptotic Gaussian
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Introduction and Motivation

Plots of Kaplan Meier estimators for the two sample
kidney data

solid line = percutaneous
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Introduction and Motivation

Here: Randomly right censored data
Patients that survive without infection are censored
Standard model: Cox proportional hazard model2

2λϑ(t) = eϑλ0(t)
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Introduction and Motivation

Questions:
Procedures significant different?
Is one survival time (or hazard rate) stochastic greater?

Answer of classical log-rank test (for proportional hazards)
p-value > 0.05

Reason: time depending hazard ratios!
Log rank test has problems detecting them!
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Classical tests

Classical two sample problem

Observe independent random variables
Xi := min(Ti ,Ci) and ∆i = 1{Ti ≤ Ci}
for 1 ≤ i ≤ n within two groups

Ti
i.i.d .∼ F1, 1 ≤ i ≤ n1, Tn1+i

i.i.d .∼ F2, 1 ≤ i ≤ n2, (continuous)

Ci
i.i.d .∼ = G1, 1 ≤ i ≤ n1, Cn1+i

i.i.d .∼ G2, 1 ≤ i ≤ n2. (continuous)
Null hypothesis

H0 : {T1, . . . ,Tn i.i.d.} = {F1 = F2} = {Λ1 = Λ2}

against 2-sided or 1-sided alternatives

H0
1 : {Λ1 6= Λ2}, H1

1 : {λ1 
 λ2}, H2
1 : {Λ1 
 Λ2}.

Unknown nuisance param: G1,G2 and under the null L(T1)
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Classical tests

Class of weighted logrank test statistics

wn(t) := w̃(F̂n(t−)), F̂n Kaplan Meier estimator of the pooled
sample
w̃ : [0,1]→ R weight function

Test statistics (ABGK 1993) are Tn(wn)
σ(wn) or Tn(wn)

σ(wn) 1{Tn(wn) > 0} with

Tn(wn) =

√
n

n1n2

∫ ∞
0

wn(s)
Y1(s)Y2(s)

Y (s)

{
d Λ̂1n(s)− d Λ̂2n(s)

}
σ2(wn) adequate variance estimator3

I w̃ = 1 for classical logrank statistic
I w̃(u) = 1− u for Prentice-Wilcoxon statistic

3Gill (1980): σ2(wn) = n
n1n2

∫∞
0 w2

n
Y1Y2

Y d Λ̂n
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Classical tests

Remarks

Intuitively: w̃ determines power behaviour
Example: Prentice-Wilcoxon with decreasing w̃(u) = 1− u

⇒ More weight on early times!
⇒ Should have good power against early hazard differences!

In comparison: Classical logrank: Equal weight on all time points!
Now: ARE comparison via reparametrization!
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Classical tests

Local parametrization (scores)

Classical approach:
classical likelihood based approach
parametric path ϑ 7→ Pϑ in a nonparametric model P of
distributions
score functions d

dϑ log dPϑ
dµ = g(ϑ)

⇒ score test
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Classical tests

Local parametrization (hazards)

approach based on hazards:
F = 1− S ←→ Λ cumulative hazard function
Now: hazard rates λ(u) = f (u)

S(u) rather than densities f (u)

parameters: relative risk = hazard rate ratio
represented by γ : [0,1]→ R under ass

lim
ϑ→0

1
ϑ

(
dΛϑ
dΛ0

− 1) = γ ◦ F0.

Rem: Holds for (ϑ� 1)

Λϑ(t) :=

∫ t

0
(1 + ϑγ ◦ F )dΛ0, Λ0 baseline hazard.
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Classical tests

Examples of semiparametric models

proport. hazards

γ1(u) = c

u1

6

-

late hazards

γ2(u) = cu

�
��

��
��
�

u1

6

-

early hazards

γ3(u) = c(1− u)

b
b
b
b
b
b
bb u1

6

-
central hazards

γ4(u) = cu(1− u)

u1

6

-
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Classical tests

Consider model given by γ ◦ F0

Recall wn(t) := w̃(F̂n(t−)), w̃ : [0,1]→ R weight function

Janssen (1991) and Neuhaus (2000): ARE of Tn(wn)
σ(wn) 1{Tn(wn) > 0}

for local alternatives4 in direction of γ ◦ F0 given by

ARE =
〈w̃ , γ〉2µ
‖w̃‖2µ‖γ‖2µ

= cos2(β)

〈w̃ , γ〉µ =
∫ 1

0 w̃γdµ, β angle between w̃ and γ
µ measure on R+ depending on Gi ,F0 and limn

n1
n

⇒ Bad ARE for some directions γ!

4L(T1, . . . ,Tn) =
⊗

i Pcni
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Classical tests

On the ARE

ARE (ψ): asymptotic relative efficiency of a test ψ

ARE(ψ) ≈
Nopt

N(ψ)
(in the limit)

N(ψ) = No. of needed obs. for ψ to achieve a given power
Nopt = Minimum no. of needed obs.
Pitman’s interpretation: 100(1− ARE)% of observations are
wasted by using ψ

⇒ Use of the full data information only for ARE = 1!
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Classical tests

Example:
ARE(ψ)=1

2 ⇒ twice as many obs. are necessary for ψ

Clearly: Optimal procedures depend on the model

which is in general unknown!

Idea: “Estimate“ the model! (locally)
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Classical tests

Closer look to weighted logrank statistics

Consider emp. subspace V = {βwn : β ∈ R} and cone
V +

1 = {βwn : β ∈ [0,∞)}, generated by wn.

Lemma (Brendel et al., 2014)
We have

Tn(wn)

σ(wn)
=
∥∥ΠV1(γ̂n)

∥∥
µ̂n

;
Tn(wn)

σ(wn)
1{Tn(wn) > 0} =

∥∥∥ΠV +
1

(γ̂n)
∥∥∥
µ̂n
,

where
µ̂n ≈ emp. estimator of µ, γ̂n = emp. estimator of γ ◦ F0 (locally a)

Π
V (+)

1
= L2(µ̂n)-projection into V (+)

1

aall estimates depend on NA (and Y ); e.g. γ̂n ≈
√

n1n2
n (d Λ̂1 − d Λ̂2)/d Λ̂n
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Classical tests

Interpretation

γ̂n estimates the γ ◦ F0-model (locally)
Logrank stat measures distance of its projection into space/cone
generated by wn

Idea: Use larger spaces/cones to cover larger classes of
alternatives!
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Weighted projection-type permutation tests

Projection approach

Idea: Scientist chooses “relevant“ weights5

win(·) := w̃i(F̂n(·−)) 1 ≤ i ≤ r ,

e.g. to discover differences of the relative risk for
I proportional hazards (constant over time)
I early survival times
I central survival times
I late survival times.

These generate larger linear space/cone:

V :=

{
r∑

i=1

βi win, βi ∈ R,

}
and V + :=

{
r∑

i=1

βi win, βi ≥ 0,

}

5F̂n Kaplan Meier estimator of the pooled sample
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Weighted projection-type permutation tests

Projection statistics

As in the one-dimensional case consider test statistics

Sn0 := ‖ΠV (γ̂n)‖2µ̂n
and Sn1 := ‖ΠV +(γ̂n)‖2µ̂n

Theorem (Brendel et al., 2014)
Under regularity conditions we have convergence in distribution under
the null

‖ΠV (γ̂n)‖2µ̂n

d−→χ2
rank(Σ) and ‖ΠV +(γ̂n)‖2µ̂n

d−→FΣ

where FΣ is continuous and Σ = (〈w̃i , w̃j〉µ)i,j≤r .
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Weighted projection-type permutation tests

Projection-type tests
Estimate Σ consistently by Σ̂

Results in tests

φ0n = 1{‖ΠV (γ̂n)‖2µ̂n
− χ2

rank(Σ̂),1−α > 0},

φ1n = 1{‖ΠV +(γ̂n)‖2µ̂n
− F−1

Σ̂
(1− α) > 0},

Theorem (Brendel et al., 2014)
Both tests are

asymptotical level α (even for G1 6= G2) and
consistent for fixed alternatives if at least one of their associated
weighted logrank tests is consistent.

⇒ Posses broader power functions!
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Weighted projection-type permutation tests

Projection-type permutation tests

Further modification: Use permutation version of the tests!

Advantage: Finitely exact under {F1 = F2,G1 = G2}.
For cn0 = χ2

rank(Σ̂),1−α
and cn1 = F−1

Σ̂
(1− α):

φ∗nk := 1{Snk − cnk > c∗nk}+ k∗n 1{Snk − cnk = c∗nk} k = 0,1,

with
c∗nk = cond (1− α)-quantile of the perm dist of Snk − cnk

Role of S̃nk = Snk − cnk (Σ̂): Studentized-type statistics!
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Weighted projection-type permutation tests

Properties

Theorem (Brendel et al., 2014)
The permutation tests are asymptotically equivalent to their
corresponding projection tests, i.e.

lim
n→∞

EH0(|φ0,n − φ∗0,n|) = 0,

lim
n→∞

EH0(|φ1,n − φ∗1,n|) = 0.

Implies same power for contigouos alternatives!

More math. details (as asymptotic admissability) in
Brendel, Janssen, Mayer & Pauly (2014, SJS).
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Simulations and Data Analysis

Set-up 1-2

Group I: T1, . . . ,Tn1 i.i.d. F0(x) = (1− exp(−x))1(0,∞)(x)

For group II: 3 different scenarios; given by directions γi = w̃i

w̃1(u) = 1, w̃2(u) = 1− 2u, w̃3(u) = u(1− u), 0 ≤ u ≤ 1,

corresponding to proportional, crossing and central hazards
Group II: Tn1+1, . . . ,Tn i.i.d. with

Λϑ,i(t) =

∫ t

0
1 + ϑw̃i(F0(x))dx
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Simulations and Data Analysis

Set-up 2-2

Censoring: Ci
u.i.v .∼ Exp(0.2) in both groups.

Simulated power of
2-sided weighted logrank test in Tn(w̃i) (optimal for direction w̃i )
Projection test φ0,n (covering all 3 directions.)

for
n1 = n2 = 50, α = 5% and different values of ϑ

Realizations of Fϑ,i by
von Neuman’s ”Acceptance-Rejection“-procedure
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Simulations and Data Analysis

Results for proportional hazards
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Simulations and Data Analysis

Results for crossing hazards

Markus Pauly (HHU Düsseldorf) Resampling methods for censored data Wien, 5 June 2014



Simulations and Data Analysis

Resultats for central hazards

Markus Pauly (HHU Düsseldorf) Resampling methods for censored data Wien, 5 June 2014



Simulations and Data Analysis

Analysis of the data example
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Simulations and Data Analysis

Analysis of the data example
Choose from class of weights w̃r ,g(x) = x r (1− x)g , 0 ≤ x ≤ 1

Fleming/Harrington (1991)
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Simulations and Data Analysis

Results

Kidney Data

test with weight p-value
(r,g) = (1,5) 0.0203
(r,g) = (2,4) 0.0089
(r,g) = (4,2) 0.0012
(r,g) = (5,1) 0.0084
(r,g) = (0,0) 0.0549
(logrank test)
projection test φ∗1,n 0.02
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Simulations and Data Analysis

One more example: Survival times of patients with tongue cancer
Differences:
Group 1: euploide cells
Group 2: aneuploide cells (i.e. cells with abnormal number of
chromosomes)
Question: Can aneuploide cells be used as a prognostic parameter for
survival time?
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Simulations and Data Analysis

Source: Klein/Moeschberger
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Simulations and Data Analysis

Results

Tongue Data

test with weight p-value
(r,g) = (1,5) 0.2104414
(r,g) = (2,4) 0.2761031
(r,g) = (4,2) 0.1451610
(r,g) = (5,1) 0.05391548
(r,g) = (0,0) 0.0832526
(logrank test)
projection test φ∗n 0.09
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More complex Multi-State Models

Competing Risks Model (easiest case)

Often: More than one event of interest!

(Xt )t≥0 càdlàg, Xt : Ω→ {0,1,2}.
0 = initial state, P(X0 = 0) = 1,
1 and 2 absorbing states (competing events).
T̄ = inf{t > 0 | Xt 6= 0} (event time)

⇒ XT̄ ∈ {1,2} (event)

Regulated by cause-specific hazard intensities αj(t)

αj(t) = α0j(t) = lim
∆↘0

P(T̄ ∈ [t , t + ∆),XT̄ = j | T̄ ≥ t)
∆

, j = 1,2.
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More complex Multi-State Models

Cumulative Incidence Functions

Aim: Statistical inference for CIFs

Fj(t) = P(T̄ ≤ t ,XT̄ = j) =

∫ t

0
P(T̄ > u−)αj(u)du, j = 1, 2,
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More complex Multi-State Models

Study with 1 ≤ i ≤ n independent patients,

(X (i)
t )t≥0 independently right-censored and left-truncated6

Counting processes
I Y (t) =

∑n
i=1 Yi (t) = No. under risk at t−

I Nj (t) =
∑n

i=1 Nj,i (t) = Observed j-events in [0, t ]

Aalen-Johansen estimator for the CIFs:

F̂j(t) =

∫ t

0

P̂(T̄ > u−)dNj(u)

Y (u)
, j = 1,2.

Remark:

Mj,i(s) = Nj,i(s)−
∫ s

0
Yi(u)αj(u) du

are local L2-martingales!

6can be relaxed as explained in Andersen et al. (1993, Chapter III); only
multiplicative intensity model needed
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More complex Multi-State Models

Martingale Representation

Let t < τ . Under
sup

u∈[0,t]
|Y (u)/n − y(u)| p−→ 0

with infu y(u) > 0, it follows

Wn(t) = n1/2{F̂1(t)− F1(t)}

= n1/2
n∑

i=1

{∫ t

0

S2(u)dM1,i(u)

Y (u)
+

∫ t

0

F1(u)dM2,i(u)

Y (u)

−F1(t)
∫ t

0

d(M1,i + M2,i)(u)

Y (u)

}
+ oP(1)

for t < τ , where S2 = 1− F2, see Andersen et al. (1993).

Consequence: Wn
D−→U on D[0, t ] by Rebolledo
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More complex Multi-State Models

Problems
I Covariance function ζ of the Gaussian process U unknown
I and lacks independent increments

Solution: Apply ’Resampling version’ of Wn

⇒ 1. Possibility: Wild Bootstrap:
Concrete: Gj,i , 1 ≤ i ≤ n, 1 ≤ j ≤ 2, i.i.d. and ⊥⊥ data with
(µ, σ2) = (0,1). Approx L(Wn) by cond dist of

Ŵn(t) = n1/2
n∑

i=1

{∫ t

0

Ŝ2(u)G1,idN1,i(u)

Y (u)
+

∫ t

0

F̂1(u)G2,idN2,i(u)

Y (u)

−F̂1(t)
∫ t

0

G1,idN1,i(u) + G2,idN2,i(u)

Y (u)

}
.

Lin’s resampling technique as special case for Gj,i
i.i.d .∼ N(0,1)
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More complex Multi-State Models

CCLT for Ŵn

Theorem (Beyersmann et al., 2013)
We have cond conv on D[0, t ] given data

Ŵn
D−→U in probability

Results in various inference proc based on Wn and crit. values
from Ŵn as

I simultaneous CBs for Fj , see e.g. Beyersmann et al. (2013)
I or differences of CIFs from 2 ind groups
I tests for

”≤” or ”=”

in the 2-sample case, see Bajrounaite and Klein (2007, 2008) and
later...

Q: Can we also apply other resampling techniques, e.g. the
classical or even weighted bootstrap?
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More complex Multi-State Models

Answers

A1: Application of Efron’s or even the weighted bootstrap depends
on the inference problem!

⇒ Ex1: Testing for ordered CIFs in unpaired 2-sample problem works
via studentization! (details in Dobler and Pauly, 2013)

⇒ Ex2: Testing for equality does not work in general!
Reason: “Centering“ and ”too” complicated limit distribution (e.g.,
weighted χ2).

A2: Yes, e.g. the Weird Bootstrap or the more general,
data-dependent Wild Bootstrap (DDWB)
Details:. . .
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More complex Multi-State Models

Rewrite

Ŵn(t) = n1/2
n∑

i=1

{
G1,i

∫ t

0

Ŝ2(u)dN1,i(u)

Y (u)
+ G2,i

∫ t

0

F̂1(u)dN2,i(u)

Y (u)

−F̂1(t)
∫ t

0
G1,i

dN1,i(u)

Y (u)
+ G2,i

dN2,i(u)

Y (u)

}
=
√

2n
2n∑

i=1

G2n,iZ2n,i(t).

for i.i.d. (G2n,i)i with (µ, σ2) = (0,1).
DDWB-weights D2n,i conditionally independent given Z
DDWB vers of AJE: Ŵ D

n =
√

2n
∑2n

i=1 D2n,iZ2n,i .

Theorem (Dobler and Pauly)
If the weights satisfy a cond Lindeberg ass (and some regularity
conditions), then we have cond conv on D[0, t ]

Ŵ D
n
D−→U in probability.
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More complex Multi-State Models

Examples

Lin’s Resampling technique and
the (independent) Wild Bootstrap.
The Weird Bootstrap of Andersen et al. (1993) corresponds to
independent weights (D2n,i)i≤2n = ((Di,j)j=1,2)i≤n with7

Di,j =
(

B
(
Y (T̃i), J(T̃i)/Y (T̃i)

)
− 1
)
.

⇒ Close in spirit to Wild Bootstrap with Poisson weights
. . .

7T̃i = inf{s ≤ t : Ni (s) > 0} ∧ t , where Ni = N1,i + N2,i
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More complex Multi-State Models

Applications: 2-sample tests for CIFs

2 independent groups k = 1,2, each with competing risks j = 1,2.
Null hypotheses 8:
H≤ : {F (1)

1 ≤st F (2)
1 } or H= : {F (1)

1 = F (2)
1 }

Typical test statistic: Functional of

Wn1n2(t) =

√
n1n2

n
{F̂ (1)

1 (t)− F̂ (2)
1 (t)}

Special case: T1,n =
∫

I Wn1n2(t)dt or T2,n =
∫

I W 2
n1n2

(t)dt

8on interval I ⊂ [0, τ)
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More complex Multi-State Models

Applications: 2-sample tests for ordered CIFs

We have
T1,n =

∫
I Wn1n2(t)dt D−→T1 ∼ N(0, σ2

ζ ), σ2
ζ unknown9

Solution: Direct resampling with DDWB or
Resampling of a studentized version with

T1,stud := T1,n/V1,n
D−→T1/σζ ∼ N(0,1)

For the general weighted bootstrap (and also for the DDWB) it can
be shown that

T̂ ∗1,stud := T̂ ∗1,n/V̂
∗
1,n

D−→N(0,1) in probability.

⇒ Gives plenty of consistent resampling tests for H≤.
Example: Bootstrap or permutation test

9σ2
ζ =

∫
I

∫
I ζ(s, t)dsdt
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More complex Multi-State Models

Applications: 2-sample tests for equality of CIFs

We have

T2,n =

∫
I
W 2

n1n2
(t)dt D−→

∞∑
j=1

λjZ 2
j

with Zj
i.i.d .∼ N(0,1), λj unknown

Solution: Direct resampling with DDWB works due to Theorem 4.
Additional possibilities/extensions:

I DDWB of standardized test statistic
T stan

2,n = (T2,n − Ê(T2,n))/ŜD(T2,n) works as well!
I Other approximation techniques also!

⇒ Gives plenty of consistent tests for H=.
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More complex Multi-State Models

Remarks and Outlook

Done: Weighted Bootstrap and DDWB for the AJE in CR
⇒ Generalizing the wild bootstrap and Lin’s resampling technique

In addition:
I Comparison of the different testing procedures (For H≤

√
)

I DDWB for more complex Multi-State models (theory
√

)
I . . .
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Thank you for your attention!
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