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CREDITS AND CAVEATS

» Joint work with

» Matias Quiroz, Stockholm University and Sveriges Riksbank
> Robert Kohn, University of New South Wales, Sydney

» Work in progress! Results are preliminary.
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BACKGROUND AND MOTIVATION

» MCMC - main tool for Bayesian computations for decades.

» Painfully slow on large datasets, especially when the likelihood is
costly to evaluate.

» How big is Big Data? Depends on model complexity.
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BACKGROUND AND MOTIVATION

» MCMC - main tool for Bayesian computations for decades.

» Painfully slow on large datasets, especially when the likelihood is
costly to evaluate.
» How big is Big Data? Depends on model complexity.

» Approximate methods abound, all with drawbacks.

> Variational Bayes (VB) [bad approx of posterior spread etc]
> Approximate Bayesian Computation (ABC) [summary statistics?]
> Integrated Nested Laplace Approximation (INLA) [applicable?]

» Sequential Monte Carlo (SMC)

» But wait! Can we speed up MCMC?
» Focus: Generic MCMC for problems with

» Tall data - many observations
> Models with time-consuming likelihood evaluations per subject
(numerical solution to partial diff eq, game theory etc)
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR

» Aim: the posterior density

p(0ly) < p(y|0)p(0)

The full likelihood p(y|6) is very costly to evaluate.

v

v

Unbiased estimator p(y|6, u) of the likelihood is available

| 216, v)p(u)ds = p(yl6)

v

u ~ p(u) are auxilliary variables used to compute p(y|6, u).

v

Examples:

» Importance sampling: u are the particles
» Here: u are indicators for the subset of observations
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR
» The joint density
p(y[0, u)p(@)p(u)
p(y)
has the correct marginal density p(6]y).

(0, uly) =
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR
» The joint density
p(y|0,u)p(6)p(u)
p(y)
has the correct marginal density p(6]y).

(0, uly) =

» Metropolis-Hastings at iteration j + 1:
> propose 6% ~ q(0*6;).
> propose u* ~ p(u)
» accept the (u*, 0*)-pair with probability

plyl0%, u*)p(6%) q(6;16")

min |1, — ”
p(y10;, uj)p(6;) q(6*[6;)
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MCMC WITH A UNBIASED LIKELIHOOD ESTIMATOR
» The joint density

p(y|6,u)p(0)p(u)
p(y)

(0, uly) =

has the correct marginal density p(6]y).

» Metropolis-Hastings at iteration j + 1:
> propose 6% ~ q(0*6;).
> propose u* ~ p(u)
» accept the (u*, 0*)-pair with probability
p(y|6*, u*)p(6*) q(6;]6")
" p(y0;, uj)p(6;) q(6*16))

min |1

» This MH chain has p(f|y) as its invariant distribution, irrespective of
the variance of p(y|6, u) [Andrieu and Robert, AnnStat2009]
» Punchline: It’s OK to replace the likelihood with an unbiased estimate.
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ESTIMATING THE LIKELIHOOD BY SUBSAMPLING

> Define:

~ L(6) = p(y|6) = TT}_; p(ykl0). Likelihood.
» ((0) =InL(0). Log-likelihood.
> £, (0) =Inp(yx|6). Log-likelihood contribution of ith observation.
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ESTIMATING THE LIKELIHOOD BY SUBSAMPLING

» Define:

(©) = ply10) =TT, pl0). Likeihood
£(0) =InL(0). Log-likelihood.
£,(8) = Inp(yi|6). Log-likelihood contribution of ith observation.

» Unbiased estimation of the log-likelihood using simple random
sampling (SRS) of size m:

Z bi(6
keS
where S(u) is the set of m sampled observatlons, and u = (u1, ..., up)
is vector of binary selection indicators.
» Note: same subsampling idea applies also to many non-iid models.
Longitudinal data. Time-series with Markov behavior.
» An unbiased estimator of the likelihood can be obtain by
bias-correcting exp (@(9))
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BIAS-CORRECTION
» Let z denote the error in the log-likelihood estimate:
7(6) = £(0) + z
> Now, since
Eexp [2(6)] = exp[€(0)] - E [exp (2)],
an unbiased estimator of the likelihood is obtained by
exp [@(9)}
E [exp ()]
> Assuming that z ~ N(0,02) [CLT + big data setting]
exp [@(9)}
exp(02/2)

» Other methods: Jackknife, generalized Poisson estimators etc

L(9) =
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SIMPLE RANDOM SAMPLING IS NO GOOD

v

Simple random sampling (SRS) gives a HUGE variance of the
log-likelihood estimator

v

.. so MH convergence is extremely slow ( = doesn’t work, gets stuck).

» SRS: Pr(ux = 1) = 1ty = m/n is the same for all observations.

v

Need more efficient sampling of data subsets!

v

Main idea here: 71 should be large when [£4(0)] is large.

MATTIAS VILLANI (STATISTICS, L1U) SPEEDING UP MCMC 8 /31



SRS IS FAR FROM THE OPTIMAL 07 =~ 1
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TPS SAMPLING + HORVITZ-THOMPSON ESTIMATOR

» ntPS-sampling: 71; « |¢;(0)]. Sampling without replacement.
» Horvitz-Thompson’s estimator of the log-likelihood

Uy
kes Tk keF Tk

@HT(9> — Z @ — Z gk(e)

» Asymptotic normality of z holds (Rosén, 1972).

» Unbiased estimate of the variance is

\A/[@HT(Q)] _ Z Z(l . ﬂknl)gk(e) £l<9), (1)

TTk| T 77

where TCk = P(Uk =1, uy = 1)
» 7TPS is time-consuming [computing 774, sampling, estimating 02].
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PPS SAMPLING + HANSEN-HURWITZ ESTIMATOR

» PPS sampling is like 7PS, but with replacement. Much faster!
» Hansen-Hurwitz estimator of the log-likelihood

o) = Lyt
m 2
{[0HH (0] = m(ml_ . ; (&;DL(I@) _2HH(9)>
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PPS SAMPLING + HANSEN-HURWITZ ESTIMATOR

» PPS sampling is like 7PS, but with replacement. Much faster!

» Hansen-Hurwitz estimator of the log-likelihood
R 1 I 4,.(0)
,€HH 6 — - uj
(6) mi; Do,
- 1 & (00 2
VEHHG - - (U: _£HH9>
) = ey L ()

v

Asymptotic normality of z holds (Rosén, 1972).

v

The p; need to be good proxies of |£;(0)].

v

Any surrogate/approximate model can be used.

v

What if no surrogate model is available? Need an general method
for approximating /;(0).
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PPS HAS ROUGHLY THE SAME VARIANCE AS 7tPS
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APPROXIMATING /;(0) - GAUSSIAN PROCESS

» Wanted: approximation of the log-likelihood contribution:

d — ((6; d)

for any data point d = (y, x) and parameter vector 6.
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APPROXIMATING /;(0) - GAUSSIAN PROCESS

» Wanted: approximation of the log-likelihood contribution:
d— ((0;d)
for any data point d = (y, x) and parameter vector 6.
> Given 0, assume a noise-free Gaussian Process (GP) prior over

d-space:

0(6;d) ~ GP [0, k(d, d")]

» Compute £(6; d) for all d € V, a small fixed subset of the data.

» Update the GP prior using £y (6) = {{(0;d)} .\ to a GP posterior.

MATTIAS VILLANI (STATISTICS, L1U) SPEEDING UP MCMC 13 /31



LEARNING A NOISE-FREE GAUSSIAN PROCESS

Length scale | = 0.2
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LEARNING A NOISE-FREE GAUSSIAN PROCESS

Length scale | = 1

Length scale | = 0.2
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LEARNING A NOISE-FREE GAUSSIAN PROCESS
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LEARNING A NOISE-FREE GAUSSIAN PROCESS
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APPROXIMATING /;(6) - GAUSSIAN PROCESS, CONT.

» Use the GP to predict ¢(0;d) for all d € V€

Pye(0) = K(dye, dy)K(dy, dy) 20y (6),

where K(dy, dy) is the covariance matrix for the data points in V.
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APPROXIMATING /;(0) - GAUSSIAN PROCESS, CONT.

» Use the GP to predict ¢(6;d) for all d € V¢

A

Pye(0) = K(dye, dy)K(dy, dy) 20y (6),
where K(dy, dy) is the covariance matrix for the data points in V.

» The kernel hyperparameters are chosen to minimize the prediction
errors on all d € V¢ for some 6 = 0 (e.g. posterior mode). Before
MCMC.

» Important: K(dy<,dy) and K(dy,dy)"! are computed once,
before the MCMC.

> In each MCMC iteration Zy«< () is obtained by two matrix-vector
multiplications. Fast!
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APPROXIMATING ¢;(0) - THIN-PLATE SURFACES

> For large datasets, GPs can be computationally demanding.

» Approximate GPs for large data exist, and likely to improve over time.
» Alt. approach for large data: regularized thin-plate spline surfaces.
» The knot locations are chosen by kmeans + boundary

» Shrinkage A (or A) chosen to minimize the prediction errors for all
de Ve

» Predicting any d € V¢
Pye(0) = Wye (WL Wy 4+ A1) TTW Ly (6),

where W, and W\ are basis-expansion matrices in d-space.

MATTIAS VILLANI (STATISTICS, L1U) SPEEDING UP MCMC 19 / 31



ADAPTIVE SAMPLING FRACTION

> Variance of 2(8) (0%) should be close to unity for optimal
efficiency/computing time trade-off (Doucet, Pitt and Kohn, 2012).

» Sampling fraction f = m/n can be chosen adaptively in each MCMC
draw.

> If (73 > 1, increase sampling fraction to f = m*/n, where m* is a
guess of the sample size needed to reach some 0'% = Vmax-

» For PPS we have a good guess by backing out m from the variance

e mt — 1 5 i <£u;(9) _@HH<9)>2

Vmax ( m— i—1 Pu;
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ADAPTIVE SAMPLING FRACTION, CONT.
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ADAPTIVE SAMPLING FRACTION, CONT.
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FIRM BANKRUPTCY AND EXCESS CASH HOLDING

» Bivariate probit with endogenity

yi = Bro+Pir-x1+Pra-xa+a-yr+e;
Y5 = Boo + Po1 - x1 + B2 - X3+ P23 - Xxa + €2
=1y >0)

y2=1(y; >0)

where €1 and € are standard Gaussian with correlation p.

> Variables:
> y; = Bankrupt, y» = Excess cash
» x3 = Profit, x = leverage, x3 = fixed assets, x4 = firm size.
» Cash has many troublesome outliers = Better with binary Excess cash.

» Time-consuming likelihood (bivariate normal integral).

v

Special case of a Gaussian copula model.
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FIRM BANKRUPTCY DATA

» Dataset used has half a million observations.

» Observations within the firm are assumed independent conditional on
time-varying covariates.

» Extension to random effects is possible.
» 5% of data is used for fitting thin-plate approximation.
» 8% of data sampled by PPS on average.

» 10,000 post burn-in draws.
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COMPARING THE EFFECTIVE DRAWS PER MINUTE
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INEFFICIENCY FACTOR
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SCALING OF THE RANDOM WALK PROPOSAL
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TARGETING DIFFERENT 0% - IMH
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MARGINAL POSTERIORS
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POSTERIOR SUMMARY

Posterior mean 25%  97.5%
Parameters in y;
B11 (Intercept) -2.543 -2.570 -2.517
B12 (Earnings) -0.138 -0.148 -0.127
B13 (Leverage) 0.304 0.292 0.316
«  (Excess cash) -0.083 -0.151 -0.015
Parameters in y;
B21 (Intercept) -0.017 -0.020 -0.013
B22 (Earnings) -0.531 -0.535 -0.527
Bas (Tangible) 0.230 0226  0.234
B2a (Size) -0.263 -0.267 -0.259
p  (Correlation) -0.195 -0.235 -0.155
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CONCLUSIONS

MAT

>

We have proposed a general framework for Pseudo-MCMC based on
efficient data subsampling.

Bias-corrected log-likelihood estimator from PPS sampling combined
with the Hansen-Hurwitz estimator.

Gaussian Process or Regularized thin-plate spline surface for
computing efficient PPS-weights.

More efficient draws per minute in a bivariate probit application to
financial data. Biggest gain for weaker proposals.

Future work:

> more examples
» improved PPS-weights, especially for problems with many covariates.
> other sampling schemes
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