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0 Gaussian process regression

@ Maximum Likelihood and Cross Validation for covariance function estimation

e Asymptotic analysis of the well-specified case

° Finite-sample and asymptotic analysis of the misspecified case
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Gaussian process regression

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process Y(x) on a domain X C R?

Predicting the continuous realization function, from a finite number of observation points \
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The Gaussian process

The Gaussian process

@ We consider that the Gaussian process is centered, Vx, E(Y(x)) =0
@ The Gaussian process is hence characterized by its covariance function
v
The covariance function

@ The function K : X2 — R, defined by K (X1, x2) = cov(Y(x1), Y(x2))

In most classical cases :
@ Stationarity : Ki(x1, X2) = K1 (X1 — X2)
@ Continuity : Ki(x) is continuous = Gaussian process realizations are continuous
@ Decrease : Ki(x) decreases with ||x|| and lim||||— 1.0 Ki(x) =0
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Example of the Matérn 3 covariance function on R

1.0

The Matérn % covariance function, for a Gaussian
process on R is parameterized by

@ A variance parameter 2 > 0
@ A correlation length parameter ¢ > 0
It is defined as

— |x1—Xo|
ng,z(Xan) =02 (1 + \/EM) e~ VBT

0.8
.

cov
0.4

0.0
.

Interpretation

@ Stationarity, continuity, decrease

@ o2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

@ ¢ corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

= Natural generalization on RY
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Covariance function estimation

Parameterization
Covariance function model {02K9,02 >0,0 e e} for the Gaussian process Y.

@ o2 is the variance parameter
@ 0 is the multidimensional correlation parameter. Kj is a stationary correlation function

Observations
Y is observed at x4, ..., Xp € X, yielding the Gaussian vector y = (Y (x1), ..., Y(xn))

Objective : build estimators 62(y) and d(y)
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Prediction with estimated covariance function

Gaussian process Y observed at xq, ..., X, and predicted at Xpew
y=(Y(x1), ..., Y(xn))!

Once the covariance parameters have been estimated and fixed to 6 and

@ R; is the correlation matrix of Y at xy, ..., X under correlation function Kj
@ r, is the correlation vector of Y between xi, ..., xn and Xnew under correlation function Kj

Prediction
The prediction is Vé(xnew) = E45(Y(Xnew)|Y(x1), -, Y(Xn)) = réR?y.

Predictive variance

The predictive variance is
var, 5(Y (Xnow)| Y (x1), ., Y (xn)) = E, [( Y (Xnew) — Y/é(xnew))2] =52 (1 - réng‘ré).

g,

("Plug-in" approach)
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lllustration of prediction

— Gaussian process realization
1.07 prediction
- 95 %confidence interval
observations
0.5
> 0.07
-0.57
-1.07
T T T T T 1
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Application to computer experiments

Computer model

A computer model, computing a given variable of interest, corresponds to a deterministic function
RY — R. Evaluations of this function are time consuming

@ Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a
car, of a plane...

Gaussian process model for computer experiments
Basic idea : representing the code function by a realization of a Gaussian process

@ Bayesian framework on a fixed function

What we obtain

@ Metamodel of the code : the Gaussian process prediction function approximates the code
function, and its evaluation cost is negligible

@ Error indicator with the predictive variance

@ Full conditional Gaussian process =- possible goal-oriented iterative strategies for
optimization, failure domain estimation, small probability problems, code calibration...

A\
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Conclusion

Gaussian process regression :
@ The covariance function characterizes the Gaussian process
@ |tis estimated first (main topic of the talk, cf below)
@ Then we can compute prediction and predictive variances with explicit matrix vector formulas
@ Widely used for computer experiments
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e Maximum Likelihood and Cross Validation for covariance function estimation
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Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define Ry as the correlation matrix of y = (Y(x1), ..., Y(xn)) with correlation function K, and
0% =1
The Maximum Likelihood estimator of (o2, §) is

SHIES

(6%4,_, Op) € argmin

1 _
(n(o%Ra + Z5y'R5"y)
02>0,0€0 @

= Numerical optimization with O(n®) criterion
= Most standard estimation method
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Cross Validation (CV) for estimation

@ Joi—i =Eo(YO)V1, s Yiets Vit s ¥n)
© o?c5,; ;=varz o(Y(X)|V1s o Yits Yists oes Yn)

Leave-One-Out criteria we study

n
fcv € argmin» (y; — Pp,i,—1)?
069 ; 1 ! !

and ) )
1 (y"_yécvyl}—i) ~2 1 (yi_ygcv,i,—i)
i Z =2 2 =1ed6oy=— Z 7
n < 045, Cs . n < cs ..
i=1 CV=hcy,i,—i i=1 Ocy,i,—i

= Alternative method used by some authors
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Virtual Leave One Out formula

Let Ry be the correlation matrix of y = (y1, ..., ¥n) with correlation function Ky

Virtual Leave-One-Out

1

1
—  (Rz'y) and 2, ;= ——
)i,i( ¢ )’ Ot Ry Mii

@ O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Using the virtual Cross Validation formula :
~ 1
dov € argmin —y'R, " diag(R, ') 2R,y
oco N

and

1
~2 te—1 A —1\—1p—1
= —y'R} R’ R’
Tev ny fcv diag( 9cv) 9cvy

= Same computational cost as ML
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e Asymptotic analysis of the well-specified case
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Well-specified case

Estimation of 0 only

For simplicity, we do not distinguish the estimations of 2 and 6. Hence we use the set
{Ky,0 € ©} of stationary covariance functions for the estimation.

Well-specified model

The true covariance function K; of the Gaussian process belongs to the set {Ky, 6 € ©}. Hence

K1 = Kgo,eo €0

— Most standard theoretical framework for estimation
= ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria ( based
on |0 — fol)
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Two asymptotic frameworks for covariance parameter estimation

@ Asymptotics (number of observations n — +o0) is an active area of research

@ There are several asymptotic frameworks because they are several possible location patterns
for the observation points

Two main asymptotic frameworks

@ fixed-domain asymptotics : The observation points are dense in a bounded domain
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@ increasing-domain asymptotics : number of observation points is proportional to domain
volume — unbounded observation domain.
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Existing fixed-domain asymptotic results

From 80’-90’ and onward. Fruitful theory for interaction estimation-prediction.

@ Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999.

Consistent estimation is impossible for some covariance parameters (identifiable in
finite-sample), see e.g.

@ Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in
Model-Based Geostatistics, Journal of the American Statistical Association (99),
250-261, 2004.

Proofs (consistency, asymptotic distribution) are challenging in several ways

o They are done on a case-by-case basis for the covariance models
@ They may assume gridded observation points
No impact of spatial sampling of observation points on asymptotic distribution

(No results for CV)
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Existing increasing-domain asymptotic results

@ Consistent estimation is possible for all covariance parameters (that are identifiable in
finite-sample). [More independence between observations]

@ Asymptotic normality proved for Maximum-Likelihood

@ Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

@ N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, Journal of
Multivariate Analysis 45 (1993) 217-233.

@ N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance

parameters, Journal of Statistical Planning and Inference 50 (1996) 327-341.
Under conditions that are

@ General for the covariance model
@ Not simple to check or specific for the spatial sampling

@ (No results for CV)

= We study increasing-domain asymptotics for ML and CV
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ed regular grid

@ Observation point X; :
Vi + eU;

@ (vj)ien= : regular square grid of step one in dimension d
o (Uj)ien~ : iid with symmetric distribution on [—1, 1]¢
@ ¢ € (—3, %) is the regularity parameter of the grid.

e ¢ =0 — regular grid.

o || close to } — irregularity is maximal

: : 13
lllustration with ¢ = 0, 58
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Why a randomly perturbed regular grid ?

@ Realizations car correspond to various sampling techniques for the observation points
@ In the corresponding paper, one main objective is to study the impact of the irregularity
(regularity parameter ¢) :
@ F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.

@ Note the condition |¢| < 1/2 = minimum distance between observation points —>
technically convenient and appears in aforementioned publications
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Consistency and asymptotic normality

Recall that Ry is defined by (Ry); ; = Ko(X; — X;). (Family of random covariance matrices)
Under general summability, regularity and identifiability conditions, we show

Proposition : for ML

@ a.s. convergence of the random Fisher information : The random trace

1 _19Rgy o1 0Rgg N it
o5 I <R90 50, R(90 a0, converges a.s to the element (I, ); ; of a p x p deterministic

matrix Iy as n — +oo
e asymptotic normality : With £y = I,/

vn (9ML = 90) = N (0, Zm)

Proposition : for CV

Same result with more complex expressions for asymptotic covariance matrix X qy
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Conclusion on well-specified case

In this expansion-domain asymptotic framework
@ ML and CV are consistent and have the standard rate of convergence v/n

@ (not presented here) in the corresponding paper we show, numerically, than CV has a larger
asymptotic variance = could be expected since we address the well-specified case

@ (not presented here) in the paper we study numerically the impact of irregularity of spatial
sampling on asymptotic variance = irregular sampling is beneficial to estimation
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° Finite-sample and asymptotic analysis of the misspecified case
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Misspecified case

The covariance function K; of Y does not belong to

{02K9,02 >0,0 € @}

= There is no true covariance parameter but there may be optimal covariance parameters for
difference criteria :

@ prediction mean square error

@ confidence interval reliability

@ multidimensional Kullback-Leibler distance
° ..

— Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria
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Finite-sample analysis

We proceed in two steps

@ When covariance function model is {chKg, o2 > O}, with K> a fixed correlation function, and
Kj is the true covariance function : explicit expressions and numerical tests

@ In the general case : numerical studies

@ Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of

Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69.
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Case of variance parameter estimation

@ Vpew : prediction of Ynew := Y(Xnew) With fixed misspecified correlation function Kz
ok [(Vnew - Ynew)2) y] : conditional mean square error of the prediction Vew
@ One estimates 02 by 62. 52 may be 6%, or 62,

e Conditional mean square error of Ynew predicted by 62¢ , with ¢, fixed by K>

Definition : the Risk

We study the Risk criterion for an estimator 62 of o2

Rz, =E {(]E [ (Vrew Ynew)2’ y] - AZCfnew)z}
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Explicit expression of the Risk

Let, fori=1,2:
@ r; be the covariance vector of Y between xq, ..., x, and xmew With covariance function K;
@ R; be the covariance matrix of Y at xq, ..., Xn with covariance function K;

Proposition : formula for quadratic estimators

When 62 = y'My, we have
Rs2 ypew = (Mo, Mo) + 2c1tr(Mo) — 2cof(Mo, My)
+¢2 — 2y cotr(My) + c3f(My, My)
with
f(A,B) = tr(A)tr(B) + 2tr(AB)
M, = (Ry'n—R{'n)(AR;' — rR")Ry
M, = MR,
¢ = 1-rR'n, i=1.2

Corollary : ML and CV are quadratic estimators = we can carry out an exhaustive numerical
study of the Risk criterion
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Two criteria for the numerical study
Definition : Risk on Target Ratio (RTR)

E KE [(Vnew - Ynew)z‘ y] - azcﬁnew)z]

E [( Vnew - Ynew)z]

72<A72’)(new

E [( S\/new - Ynew)z] -

Definition : Bias on Target Ratio (BTR)
G, )

‘IE [( \A/new — YneW)z] —E ( Xnew
BTR(Xnew) = S
E [( Ynew — Ynew)z]

RTR(Xnew) =

Integrated versions over the prediction domain X’

IRTR = \// HTHZ(Xnew)anew
X

and
IBTR = \// BTRZ(XneW)aneW
X
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For designs of observation points that are not too regular (1/6)

70 observation points on [0, 1]5. Mean over LHS-Maximin samplings.
Ki and K, are power-exponential covariance functions,

5 v\ Pi
Ki(x,y) = exp (—Z('X’éiy") )

j=1
with ¢4 = ¢, = 1.2, py = 1.5, and p» varying.
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For designs of observation points that are not too regular (2/6)

70 observations on [0, 1]°. Mean over LHS-Maximin samplings.
Ki and K, are power-exponential covariance functions,

5 c— i \Pi
Ki(x,y) = exp <_Z(|Xjé1yl|) )7

j=1

with ¢4 = ¢, = 1.2, py = 1.5, and p» varying.
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For designs of observation points that are not too regular (3/6)

70 observations on [0, 1]°. Mean over LHS-Maximin samplings.
K;y and K> are Matérn covariance functions,

K) = s (22 212) b, (2l

with ' the Gamma function and K., the modified Bessel function of second order.
We use ¢4 = ¢, = 1.2, vy = 1.5, and v, varying.
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For designs of observation points that are not too regular (4/6)

70 observations on [0, 1]°. Mean over LHS-Maximin samplings.
K;y and K> are Matérn covariance functions,

K) = s (22 212) b, (2l

with ' the Gamma function and K., the modified Bessel function of second order.
We use ¢4 = ¢, = 1.2, vy = 1.5, and v, varying.
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For designs of observation points that are not too regular (5/6)

70 observations on [0, 1]°. Mean over LHS-Maximin samplings.
K;y and K> are Matérn covariance functions,

1 IIX—yllz)”’ ( HX—}’||2)
K; =——(2/vi——— | K, |(2/vi——= ),
) = g (VT (el
with ' the Gamma function and K., the modified Bessel function of second order.
We use vy = v, = 3, £y = 1.2 and £, varying.

]_A
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For designs of observation points that are not too regular (6/6)

70 observations on [0, 1]°. Mean over LHS-Maximin samplings.
K;y and K> are Matérn covariance functions,

Ko) = s (22 212) b, (2l

with ' the Gamma function and K., the modified Bessel function of second order.
We use vy = v, = 3, £y = 1.2 and £, varying.
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Case of a regular grid (Smolyak construction) (1/4)

Projections of the observations points on the first two base vectors :
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Case of a regular grid (Smolyak construction) (2/4)

For the power-exponential case. p1 = 1.5 and p, varying
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Case of a regular grid (Smolyak construction) (3/4)

For the Matérn case. vy = 1.5 and v, varying

3.0
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Case of a regular grid (Smolyak con

ction) (4/4)

For the Matérn case. ¢1 = 1.2 and ¢, varying
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Summary of finite-sample analysis

For variance parameter estimation

@ For not-too-regular designs : CV is more robust than ML to misspecification

@ Larger variance but smaller bias for CV
@ The bias term becomes dominant in the model misspecification case

@ For regular designs : CV is more biased than ML

— (not presented here) in the paper, a numerical study based on analytical functions confirms
these findings for the estimation of correlation parameters as well

Interpretation

@ For irregular samplings of observations points, prediction for new points is similar to
Leave-One-Out prediction = the Cross Validation criterion can be unbiased

@ For regular samplings of observations points, prediction for new points is different from
Leave-One-Out prediction = the Cross Validation criterion is biased

= we now support this interpretation in an asymptotic framework
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Expansion-domain asymptotics with purely random sampling

Context :
@ The observation points X, ..., X, are iid and uniformly distributed on [0, n'/9]9

@ We use a parametric noisy Gaussian process model with stationary covariance function
model
{K97 AS e}

with stationary Kj of the form
Ko(ty — ) = Keo(ty — 1) + 0914 =4,
N N e

continuous part noise part

where K¢ ¢(t) is continuous in t and g > 0
— Jy corresponds to a measure error for the observations or a small-scale variability of the
Gaussian process

@ The model satisfies regularity and summability conditions
@ The true covariance function Kj is also stationary and summable
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Cross Validation asymptotically minimizes the integrated prediction

error (1/2)

Let ¥5(t) be the prediction of the Gaussian process Y at t, under correlation function Ky, from
observations Y(x1), ..., Y(xn)

Integrated prediction error :

E ! o0t — (1) dt
me = E/[Q,ﬂ/d]d ( 9( )_ ( ))

Intuition :
The variable t above plays the same role as a new observation point X1, uniform on [0, n'/9]¢
and independent of Xy, ..., Xn

So we have ,
E (Eno) = E ([Y(Xn11) = Eopx(YXar )l Y (X)), s YOX0)]?)

and so when niis large
= (600) == (530050,

— This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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Cross Validation asymptotically minimizes the integrated prediction

error (2/2)

We show in

@ F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, ArXiv preprint http://arxiv.org/abs/1412.1926, Submitted.

With A »
Eng = /[0,,,1/d]d (%o(t) — Y(0))" ot
we have
Enioy = gnE Eno + op(1).
Comments :
@ Same Gaussian process realization for both covariance parameter estimation and prediction
error

@ The optimal (unreachable) prediction error infycg Ep g is lower-bounded = CV is indeed
asymptotically optimal
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Maximum Likelihood asymptotically minimizes the multidimensional

Kullback-Leibler divergence

Let KLy, ¢ be 1/ntimes the Kullback-Leibler divergence dy, (K1||Ky), between the
multidimensional Gaussian distributions of y, given observation points Xj, ..., X», under covariance
functions Ky and Kj.

We show

KLy g, = jof Klno + 0p(1).

Comments :
@ In increasing-domain asymptotics, when Ky # Ky, KLp ¢ is usually lower-bounded =—- ML is
indeed asymptotically optimal
@ Maximum Likelihood is optimal for a criterion that is not prediction oriented
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Conclusion

The results shown support the following general picture
@ For well-specified models, ML would be optimal
@ For regular designs of observation points, the principle of CV does not really have ground

@ For more irregular designs of observation points, CV can be preferable for specific
prediction-purposes (e.g. integrated prediction error). (But its variance can be problematic)

Some potential perspectives

@ Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance

@ Start studying the fixed-domain asymptotics of CV, in the particular cases where this is done
for ML
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Thank you for your attention !
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