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Gaussian process regression

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process Y (x) on a domain X ⊂ Rd
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Goal
Predicting the continuous realization function, from a finite number of observation points
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The Gaussian process

The Gaussian process
We consider that the Gaussian process is centered, ∀x ,E(Y (x)) = 0

The Gaussian process is hence characterized by its covariance function

The covariance function
The function K1 : X 2 → R, defined by K1(x1, x2) = cov(Y (x1),Y (x2))

In most classical cases :

Stationarity : K1(x1, x2) = K1(x1 − x2)

Continuity : K1(x) is continuous⇒ Gaussian process realizations are continuous

Decrease : K1(x) decreases with ||x || and lim||x||→+∞ K1(x) = 0

François Bachoc Gaussian process regression WU - May 2015 4 / 46



Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a Gaussian

process on R is parameterized by

A variance parameter σ2 > 0

A correlation length parameter ` > 0

It is defined as

Kσ2,`(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|
`

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

co
v

l=0.5
l=1
l=2

Interpretation
Stationarity, continuity, decrease

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

⇒ Natural generalization on Rd
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Covariance function estimation

Parameterization
Covariance function model

{
σ2Kθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian process Y .

σ2 is the variance parameter

θ is the multidimensional correlation parameter. Kθ is a stationary correlation function

Observations
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn))

Estimation

Objective : build estimators σ̂2(y) and θ̂(y)
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Prediction with estimated covariance function

Gaussian process Y observed at x1, ..., xn and predicted at xnew
y = (Y (x1), ...,Y (xn))t

Once the covariance parameters have been estimated and fixed to σ̂ and θ̂

Rθ̂ is the correlation matrix of Y at x1, ..., xn under correlation function Kθ̂
rθ̂ is the correlation vector of Y between x1, ..., xn and xnew under correlation function Kθ̂

Prediction

The prediction is Ŷθ̂(xnew ) := Eθ̂(Y (xnew )|Y (x1), ...,Y (xn)) = r t
θ̂
R−1
θ̂

y .

Predictive variance
The predictive variance is
varσ̂,θ̂(Y (xnew )|Y (x1), ...,Y (xn)) = Eσ̂,θ̂

[
(Y (xnew )− Ŷθ̂(xnew ))2

]
= σ̂2

(
1− r t

θ̂
R−1
θ̂

rθ̂
)

.

("Plug-in" approach)
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Illustration of prediction
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Application to computer experiments

Computer model
A computer model, computing a given variable of interest, corresponds to a deterministic function
Rd → R. Evaluations of this function are time consuming

Examples : Simulation of a nuclear fuel pin, of thermal-hydraulic systems, of components of a
car, of a plane...

Gaussian process model for computer experiments
Basic idea : representing the code function by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain
Metamodel of the code : the Gaussian process prediction function approximates the code
function, and its evaluation cost is negligible

Error indicator with the predictive variance

Full conditional Gaussian process⇒ possible goal-oriented iterative strategies for
optimization, failure domain estimation, small probability problems, code calibration...
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Conclusion

Gaussian process regression :

The covariance function characterizes the Gaussian process

It is estimated first (main topic of the talk, cf below)

Then we can compute prediction and predictive variances with explicit matrix vector formulas

Widely used for computer experiments
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Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the correlation matrix of y = (Y (x1), ...,Y (xn)) with correlation function Kθ and
σ2 = 1
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Rθ|) +

1
σ2

y t R−1
θ y

)

⇒ Numerical optimization with O(n3) criterion
⇒ Most standard estimation method
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Cross Validation (CV) for estimation

ŷθ,i,−i = Eθ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

σ2c2
θ,i,−i = varσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria we study

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

and
1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

σ̂2
CV c2

θ̂CV ,i,−i

= 1⇔ σ̂2
CV =

1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

c2
θ̂CV ,i,−i

=⇒ Alternative method used by some authors
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Virtual Leave One Out formula

Let Rθ be the correlation matrix of y = (y1, ..., yn) with correlation function Kθ

Virtual Leave-One-Out

yi − ŷθ,i,−i =
1

(R−1
θ )i,i

(
R−1
θ y

)
i

and c2
θ,i,−i =

1

(R−1
θ )i,i

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology,
1983.

Using the virtual Cross Validation formula :

θ̂CV ∈ argmin
θ∈Θ

1
n

y t R−1
θ diag(R−1

θ )−2R−1
θ y

and
σ̂2

CV =
1
n

y t R−1
θ̂CV

diag(R−1
θ̂CV

)−1R−1
θ̂CV

y

⇒ Same computational cost as ML
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Well-specified case

Estimation of θ only

For simplicity, we do not distinguish the estimations of σ2 and θ. Hence we use the set
{Kθ, θ ∈ Θ} of stationary covariance functions for the estimation.

Well-specified model
The true covariance function K1 of the Gaussian process belongs to the set {Kθ, θ ∈ Θ}. Hence

K1 = Kθ0 , θ0 ∈ Θ

=⇒ Most standard theoretical framework for estimation
=⇒ ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria ( based
on |θ̂ − θ0|)

François Bachoc Gaussian process regression WU - May 2015 16 / 46



Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research

There are several asymptotic frameworks because they are several possible location patterns
for the observation points

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain
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increasing-domain asymptotics : number of observation points is proportional to domain
volume −→ unbounded observation domain.
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Existing fixed-domain asymptotic results

From 80’-90’ and onward. Fruitful theory for interaction estimation-prediction.

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999.

Consistent estimation is impossible for some covariance parameters (identifiable in
finite-sample), see e.g.

Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in
Model-Based Geostatistics, Journal of the American Statistical Association (99),
250-261, 2004.

Proofs (consistency, asymptotic distribution) are challenging in several ways
They are done on a case-by-case basis for the covariance models
They may assume gridded observation points

No impact of spatial sampling of observation points on asymptotic distribution

(No results for CV)
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Existing increasing-domain asymptotic results

Consistent estimation is possible for all covariance parameters (that are identifiable in
finite-sample). [More independence between observations]

Asymptotic normality proved for Maximum-Likelihood

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, Journal of
Multivariate Analysis 45 (1993) 217-233.

N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance
parameters, Journal of Statistical Planning and Inference 50 (1996) 327-341.

Under conditions that are
General for the covariance model
Not simple to check or specific for the spatial sampling

(No results for CV)

=⇒We study increasing-domain asymptotics for ML and CV
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We study a randomly perturbed regular grid

Observation point Xi :
vi + εUi

(vi )i∈N∗ : regular square grid of step one in dimension d
(Ui )i∈N∗ : iid with symmetric distribution on [−1, 1]d

ε ∈ (− 1
2 ,

1
2 ) is the regularity parameter of the grid.

ε = 0 −→ regular grid.
|ε| close to 1

2 −→ irregularity is maximal

Illustration with ε = 0, 1
8 ,

3
8
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Why a randomly perturbed regular grid ?

Realizations car correspond to various sampling techniques for the observation points

In the corresponding paper, one main objective is to study the impact of the irregularity
(regularity parameter ε) :

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.

Note the condition |ε| < 1/2 =⇒ minimum distance between observation points =⇒
technically convenient and appears in aforementioned publications
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Consistency and asymptotic normality

Recall that Rθ is defined by (Rθ)i,j = Kθ(Xi − Xj ). (Family of random covariance matrices)
Under general summability, regularity and identifiability conditions, we show

Proposition : for ML
a.s. convergence of the random Fisher information : The random trace
1

2n Tr
(

R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
converges a.s to the element (IML)i,j of a p × p deterministic

matrix IML as n→ +∞
asymptotic normality : With ΣML = I−1

ML

√
n
(
θ̂ML − θ0

)
→ N (0,ΣML)

Proposition : for CV
Same result with more complex expressions for asymptotic covariance matrix ΣCV
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Conclusion on well-specified case

In this expansion-domain asymptotic framework

ML and CV are consistent and have the standard rate of convergence
√

n

(not presented here) in the corresponding paper we show, numerically, than CV has a larger
asymptotic variance =⇒ could be expected since we address the well-specified case

(not presented here) in the paper we study numerically the impact of irregularity of spatial
sampling on asymptotic variance =⇒ irregular sampling is beneficial to estimation
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Misspecified case

The covariance function K1 of Y does not belong to{
σ2Kθ, σ2 ≥ 0, θ ∈ Θ

}
=⇒ There is no true covariance parameter but there may be optimal covariance parameters for
difference criteria :

prediction mean square error

confidence interval reliability

multidimensional Kullback-Leibler distance

...

=⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria
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Finite-sample analysis

We proceed in two steps

When covariance function model is
{
σ2K2, σ

2 ≥ 0
}

, with K2 a fixed correlation function, and
K1 is the true covariance function : explicit expressions and numerical tests

In the general case : numerical studies

Bachoc F, Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification, Computational Statistics and Data Analysis
66 (2013) 55-69.
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Case of variance parameter estimation

Ŷnew : prediction of Ynew := Y (xnew ) with fixed misspecified correlation function K2

E
[

(Ŷnew − Ynew )2
∣∣∣ y] : conditional mean square error of the prediction Ŷnew

One estimates σ2 by σ̂2. σ̂2 may be σ̂2
ML or σ̂2

CV

Conditional mean square error of Ŷnew predicted by σ̂2c2
xnew with c2

xnew fixed by K2

Definition : the Risk
We study the Risk criterion for an estimator σ̂2 of σ2

Rσ̂2,xnew
= E

[(
E
[

(Ŷnew − Ynew )2
∣∣∣ y]− σ̂2c2

xnew

)2
]
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Explicit expression of the Risk

Let, for i = 1, 2 :

ri be the covariance vector of Y between x1, ..., xn and xnew with covariance function Ki

Ri be the covariance matrix of Y at x1, ..., xn with covariance function Ki

Proposition : formula for quadratic estimators

When σ̂2 = y t My , we have

Rσ̂2,xnew
= f (M0,M0) + 2c1tr(M0)− 2c2f (M0,M1)

+c2
1 − 2c1c2tr(M1) + c2

2 f (M1,M1)

with

f (A,B) = tr(A)tr(B) + 2tr(AB)

M0 = (R−1
2 r2 − R−1

1 r1)(r t
2R−1

2 − r t
1R−1

1 )R1

M1 = MR1

ci = 1− r t
i R−1

i ri , i = 1, 2

Corollary : ML and CV are quadratic estimators =⇒ we can carry out an exhaustive numerical
study of the Risk criterion

François Bachoc Gaussian process regression WU - May 2015 28 / 46



Two criteria for the numerical study

Definition : Risk on Target Ratio (RTR)

RTR(xnew ) =

√
Rσ̂2,xnew

E
[
(Ŷnew − Ynew )2

] =

√√√√E

[(
E
[(

Ŷnew − Ynew

)2
∣∣∣∣ y]− σ̂2c2

xnew

)2
]

E
[
(Ŷnew − Ynew )2

]

Definition : Bias on Target Ratio (BTR)

BTR(xnew ) =

∣∣∣E [(Ŷnew − Ynew )2
]
− E

(
σ̂2c2

xnew

)∣∣∣
E
[
(Ŷnew − Ynew )2

]
Integrated versions over the prediction domain X

IRTR =

√∫
X

RTR2(xnew )dxnew

and

IBTR =

√∫
X

BTR2(xnew )dxnew
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For designs of observation points that are not too regular (1/6)

70 observation points on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are power-exponential covariance functions,

Ki (x , y) = exp

− 5∑
j=1

( |xj − yj |
`i

)pi

,
with `1 = `2 = 1.2, p1 = 1.5, and p2 varying.
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For designs of observation points that are not too regular (2/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are power-exponential covariance functions,

Ki (x , y) = exp

− 5∑
j=1

( |xj − yj |
`i

)pi

,
with `1 = `2 = 1.2, p1 = 1.5, and p2 varying.
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For designs of observation points that are not too regular (3/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use `1 = `2 = 1.2, ν1 = 1.5, and ν2 varying.
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For designs of observation points that are not too regular (4/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use `1 = `2 = 1.2, ν1 = 1.5, and ν2 varying.
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For designs of observation points that are not too regular (5/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use ν1 = ν2 = 3

2 , `1 = 1.2 and `2 varying.
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For designs of observation points that are not too regular (6/6)

70 observations on [0, 1]5. Mean over LHS-Maximin samplings.
K1 and K2 are Matérn covariance functions,

Ki (x , y) =
1

Γ(νi )2νi−1

(
2
√
νi
||x − y ||2

`i

)νi
Kνi

(
2
√
νi
||x − y ||2

`i

)
,

with Γ the Gamma function and Kνi the modified Bessel function of second order.
We use ν1 = ν2 = 3

2 , `1 = 1.2 and `2 varying.
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Case of a regular grid (Smolyak construction) (1/4)

Projections of the observations points on the first two base vectors :
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Case of a regular grid (Smolyak construction) (2/4)

For the power-exponential case. p1 = 1.5 and p2 varying
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Case of a regular grid (Smolyak construction) (3/4)

For the Matérn case. ν1 = 1.5 and ν2 varying
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Case of a regular grid (Smolyak construction) (4/4)

For the Matérn case. `1 = 1.2 and `2 varying
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Summary of finite-sample analysis

For variance parameter estimation
For not-too-regular designs : CV is more robust than ML to misspecification

Larger variance but smaller bias for CV
The bias term becomes dominant in the model misspecification case

For regular designs : CV is more biased than ML

=⇒ (not presented here) in the paper, a numerical study based on analytical functions confirms
these findings for the estimation of correlation parameters as well

Interpretation
For irregular samplings of observations points, prediction for new points is similar to
Leave-One-Out prediction =⇒ the Cross Validation criterion can be unbiased

For regular samplings of observations points, prediction for new points is different from
Leave-One-Out prediction =⇒ the Cross Validation criterion is biased

=⇒ we now support this interpretation in an asymptotic framework
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Expansion-domain asymptotics with purely random sampling

Context :

The observation points X1, ...,Xn are iid and uniformly distributed on [0, n1/d ]d

We use a parametric noisy Gaussian process model with stationary covariance function
model

{Kθ, θ ∈ Θ}

with stationary Kθ of the form

Kθ(t1 − t2) = Kc,θ(t1 − t2)︸ ︷︷ ︸
continuous part

+ δθ1t1=t2︸ ︷︷ ︸
noise part

where Kc,θ(t) is continuous in t and δθ > 0
=⇒ δθ corresponds to a measure error for the observations or a small-scale variability of the
Gaussian process

The model satisfies regularity and summability conditions

The true covariance function K1 is also stationary and summable
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Cross Validation asymptotically minimizes the integrated prediction
error (1/2)

Let Ŷθ(t) be the prediction of the Gaussian process Y at t , under correlation function Kθ , from
observations Y (x1), ...,Y (xn)

Integrated prediction error :

En,θ :=
1
n

∫
[0,n1/d ]d

(
Ŷθ(t)− Y (t)

)2
dt

Intuition :
The variable t above plays the same role as a new observation point Xn+1, uniform on [0, n1/d ]d

and independent of X1, ...,Xn

So we have
E
(
En,θ

)
= E

([
Y (Xn+1)− Eθ|X (Y (Xn+1)|Y (X1), ...,Y (Xn))

]2)
and so when n is large

E
(
En,θ

)
≈ E

(
1
n

n∑
i=1

(yi − ŷθ,i,−i )
2

)
=⇒ This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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Cross Validation asymptotically minimizes the integrated prediction
error (2/2)

We show in

F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, ArXiv preprint http://arxiv.org/abs/1412.1926, Submitted.

Theorem
With

En,θ =

∫
[0,n1/d ]d

(
Ŷθ(t)− Y (t)

)2
dt

we have
En,θ̂CV

= inf
θ∈Θ

En,θ + op(1).

Comments :

Same Gaussian process realization for both covariance parameter estimation and prediction
error

The optimal (unreachable) prediction error infθ∈Θ En,θ is lower-bounded =⇒ CV is indeed
asymptotically optimal
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Maximum Likelihood asymptotically minimizes the multidimensional
Kullback-Leibler divergence

Let KLn,θ be 1/n times the Kullback-Leibler divergence dKL(K1||Kθ), between the
multidimensional Gaussian distributions of y , given observation points X1, ...,Xn, under covariance
functions Kθ and K1.
We show

Theorem

KLn,θ̂ML
= inf
θ∈Θ

KLn,θ + op(1).

Comments :

In increasing-domain asymptotics, when Kθ 6= K0, KLn,θ is usually lower-bounded =⇒ ML is
indeed asymptotically optimal

Maximum Likelihood is optimal for a criterion that is not prediction oriented
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Conclusion

The results shown support the following general picture

For well-specified models, ML would be optimal

For regular designs of observation points, the principle of CV does not really have ground

For more irregular designs of observation points, CV can be preferable for specific
prediction-purposes (e.g. integrated prediction error). (But its variance can be problematic)

Some potential perspectives

Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to
reduce the variance

Start studying the fixed-domain asymptotics of CV, in the particular cases where this is done
for ML
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Thank you for your attention !
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