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The Trading Book

e Contains assets that are available to trade.

e Can be contrasted with the more traditional banking book which contains
loans and other assets that are typically held to maturity and not traded.

e Trading book is supposed to contain assets that can be assigned a fair
value at any point in time based on “marking to market” or “marking to
model”.

o Examples: fixed income instruments; derivatives.

e The trading book is often identified with market risk whereas the banking
book is largely affected by credit risk.

e The Basel rules allow banks to use internal Value-at-Risk (VaR) models
to measure market risks in the trading book.

e These models are used to estimate a P&L (profit-and-loss) distribution
from which risk measures like VaR (value-at-risk) and ES (expected
shortfall) are calculated.

¢ Risk measures are used to determine regulatory capital requirements
and for internal limit setting.
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Trading Book Losses

@ The risk factors at time t are denoted by the vector Z; = (Z;1, ..., Zig,)-
These include, for example, equity prices, exchange rates, interest rates
for different maturities and volatility parameters.

@ The value of the trading book is given by formula of form
Vi = fiy(t, Z) (1)

where f;; is the portfolio mapping at t which is assumed to be known.
@ The risk factors Z; are observable at time t and hence V; is known at .

@ Assuming positions held over the period [t, t + 1] and ignoring
intermediate income, the trading book loss is described by

Ly = (Vg1 = Vo) = — (gt +1,2Ze41) — fig(t, Z))
= — (fhg(t+1,Z+ Xe1) — fig(t, Z2))
= fy(Xer1)

where Xi,1 = Z;,1 — Z; are the risk-factor changes and [ is a function
we refer to as the loss operator.
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Estimating VaR and ES

m The bank (ideally) estimates the conditional loss distribution
Flom(X) = P (hg(Xie1) < x | F2)

where F; denotes the available information at time t. Typically this is the
information in past risk-factor changes F; = o({(Xs) : s < t}).

m Some methods used in practice (e.g. historical simulation) apply an
unconditional approach, assuming stationarity of past risk-factor changes
(Xs)s<t and estimating the distribution of f4(X) under stationary
distribution Fx.

m The bank’s forms an estimate I:'me of the loss distribution using
historical data up to time t. The estimate is intended to be particularly
accurate in the tail.

m We write VaR!, and ES, for the a-quantile and a-shortfall of the true
conditional loss distribution £, .| and we write VaR, and ES_, for
estimates of these quantities based on the model F, , |7,

m The model may be parametric or non-parametric (based on the empirical
distribution function).
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VaR and ES: Reminder

Let F; denote a generic loss df and let 0 < « < 1. Typically o > 0.95.
@ Value at Risk is defined to be
VaR, = g.(FL) = F (o), (2)

where we use the notation g, (F;) for a quantile of the distribution and
F~ for the (generalized) inverse of F;.

@ Provided the integral converges, expected shortfall is defined to be

1 1
€S, — 1 | au(Fau @)
—al,
If F, is a continuous df and L ~ F; then
ES. = E(L| L> VaR,(L)).

We will assume the true underlying loss distributions are continuous.
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The Backtesting Problem

——t —
@ The estimates VaR,, and ES,, derived at time t for the loss operator /iy
and time horizon [t, t 4+ 1] are compared with the realization of L; 4 at
time t+ 1.

@ This is a one-off, unrepeatable experiment because the loss operator /
and the conditional distribution Fy, | change at each time point.

@ In fact the idea of a “true distribution” F, .=, is abstract given that we
only ever see one observation from this distribution. Davis (2014) refers
to any hypothesis that F,, |, takes a particular specified form as being
unfalsifiable and therefore meaningless.

@ Nevertheless, we adhere to the idea of a true underlying model at each
time point.

@ Even if we can never reject a hypothesized model at a particular time
point t, we can collect evidence over time that we have a tendency to use
models with a particular deficiency (e.g. a tendency to underestimate
VaR).
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Violations and Their Properties

m The event {L,.1 > VaR.} is a (theoretical) VaR violation or exception.
m Define the event indicator variable by /.1 = /{L,+1>VaR;}-
m By definition of the quantile and continuity of F, .| we have

E(hs1 | Ft) = P(Lty1 > VaR!, | Fr) =1 —a. (4)

It may be shown that a process (/;):cz adapted to (F;):ez and satisfying
E(l; | Fi—1) =1 — «for all tis a Bernoulli trials process (iid variables).

Implication 1: M =37, hy1 ~ B(m,1 — a).
Implication 2: Let To = 0 and define the violation times by

T=inf{t: Ty <t Ly >VaRl}, j=1,2,....

The spacings S; = T; — T;_1 are independent geometric random variables
with mean 1/(1 — «).
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Theoretical Violations in GARCH Process

violations: 59 in 2000 : 3%, p—val = 0.09

T T T T T
o 500 1000 1500 2000

Index

Here we consider VaRg g75.
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Point Process of Violations + Spacings

violations: 59 in 2000 : 3% QQplot

overshoot
Geom

il l ". H |

o 500 1000 1500 2000 o 20 40 60 80 100 120

Index spacings
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Calibration Function or Signature

@ Following Christoffersen (1998) a test of the binomial behaviour of the
number of violations is often referred to as a test of unconditional
coverage and a test that also addresses the hypothesis of independence
is a test of conditional coverage.

@ The property (4) can be expressed in terms of a calibration
function (Davis, 2014) (also known as a signature in elicitability literature).

@ That is, we may write (4) as

E (ha(VaR;, Lit) | f,) =0

where h,, is the calibration function given by
ha(q,1) = lijsqy — (1 — a). ()

@ Remarkably (h.(VaR!, L;1)) forms a process of mean-zero iid variables
regardless of underlying model.
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Formulating Hypotheses

@ In practice VaR; is estimated at a series of time points t =1,..., mand
we test the null and alternative hypotheses

Ho E(ha(\//aﬁ;,L,+1)|f,):o, t=1,....m,
Hy E(ha(\Ta\RL,L,H)|J—'t)>O, t=1,....m (with > for some t).

@ The null is equivalent to the hypothesis that VaR!, is correctly estimated
at all time points and the alternative is that VaR!, is systematically
underestimated.

@ Under Hy we have
P(Liit > VaR, | F)=1—a,

form a

@ Thus the violation indicator variables defined by Alm =1
Bernoulli trials process with event probability .

{Li1>VaR,, }
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Possible Tests

@ Tests are based on the realized values of {7,+1 ct=1,...,m}.

If we define the statistic 2;11 7,+1 then, under Hy, this statistic should
have a binomial distribution.

A test for binomial behaviour can be based on a likelihood ratio statistic
(Christoffersen, 1998), score statistic or direct comparison with binomial.

Christoffersen (1998) proposed a test for independence of violations
against the alternative of first-order Markov behaviour; a similar test is
considered in Davis (2014).

Christoffersen and Pelletier (2004) proposed a test based on the
spacings between violations. The null hypothesis of exponential spacings
(constant hazard model) is tested against a Weibull alternative (in which
the hazard function may be increasing or decreasing). See

also Berkowitz et al. (2011).

A regression-based approach using the CAViaR framework of Engle and
Manganelli (2004) works well.
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Finding a Calibration Function for Expected Shortfall

@ A natural approach to backtesting expected shortfall estimates is to look
for a calibration function, that is a function h such that

E(h(ES!,, Liy1) | F1) =0

for a large class of models.
@ However, it is not possible to find such a function (a fact that is related to
the non-elicitability of expected shortfall; see Acerbi and Szekely (2014)).

@ Instead, the backtests that have been proposed generally rely on
calibration functions h that also reference VaR and satisfy

E(h(VaR!,,ES!,, Li1) | F1) = 0.

(e
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First Calibration Function
@ By the definition of expected shortfall we have that

E ((L,+1 —ES) bt | f,) ~0. (6)

@ Using the calibration function

I—e
h(1)(qa e, /) = (e> I{I>q}

we define the quantity
Kiyr = hD(VaR!,, ES,, Lis1). (7)

@ Expressions of this kind were studied in McNeil and Frey (2000) who
used them to define violation residuals.

@ The idea of analysing (7) has been further developed in Acerbi and
Szekely (2014). Clearly we have that

E(Ki+1) = E (K1 | Ft) = 0.
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Second Calibration Function

@ Acerbi and Szekely (2014) obtained an alternative calibration function by
considering

E(Liy1hyt | F) —ES (1 —a) =0, (8)
which also follows from (6).
@ If we define

/
(g e.)= 2% —(1-a)
we can set
St+1 = hch)(Vafoa ESL? Lt+1 ) ) (9)
so that E(Si11) = E(Si11 | Ft) =0.
@ We use a slightly different scaling to Acerbi and Szekely (2014).
@ Under our definition, S;,¢ and K;, 1 are related by

Sti1 = Kept + (b1 — (1 = a)).
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Properties of Violation Residuals

@ The processes (K;) and (S;) are martingale difference processes
(F-adapted processes (Y;) satisfying E(Yiy1 | Ft) = 0).

@ Unlike the series (I} — (1 — «)), which is also an iid series, it is not
possible to make stronger statements about (K;) and (S;) without making
stronger assumptions about the underlying model.

@ For example, suppose that losses (L;) follow an iid innovations model of

the form
Ly =014, Vi, (10)

where 02 = var(L; | F;_1) and (Z) forms a strict white noise (an iid
process) with mean zero and variance one (such as a GARCH model).

@ Under assumption (10) the processes (K;) and (S;) defined by applying
the constructions (7) and (9) are processes of iid variables with mean

zero.
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(Kt) and (S;) for GARCH Process (m = 2000)
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Formulating Tests
@ Now let
(Rt = KO(VaR,,ES,, Lipy) : t=1,....m)
(St = HO(VaR,,ES,, Lipy) : t=1,....m)

denote the violation residuals obtained when estimates of VaR!, and ES/,
are inserted in the calibration functions.

@ We consider the problem of testing for mean-zero behaviour in these
residuals.

@ Clearly we have the relationship

-~ ) /\t
Sty1 = Kip1 + ha(VaR,,, Ly1) (11)

where h,, is the calibration function for VaR estimation.

@ A test for the mean-zero behaviour of the §,+1 residuals can be thought
of as combining a test for the mean-zero behaviour of the K;, ¢ residuals
and a test for correct VaR estimation.
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Mean-Zero Test for (f(t) Residuals

@ Hypotheses:

HO . /IELt+1|.7'—t(X) = FL[+1|.7‘—t(X)7 Xz VaRZm t= 17’ -, m,
>

Hy : E(Ki4)>0, t=1,...,m (with > for some t).

@ Null implies that VaR and ES are correctly estimated and E(R,+1) =0.

@ Alternative can arise from different deficiencies of IA-'LH1 |7, true for
example if VaR is correctly estimated but ES underestimated.

@ A test based on the (f(,) residuals could be viewed as a second-stage
test after the null hypothesis of accurate VaR estimation had been tested.

@ We note that

-~ -~ — t
E(K[+1) =0 < E(KH—1 | Lf+1 > VaRa) =0.

@ It suffices to test the values of R,+1 at times when violations occur for
mean-zero behaviour.
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Bootstrap Test or t-Test

@ McNeil and Frey (2000) suggest a bootstrap hypothesis test of Hy against
H; based on the non-zero residuals.

@ This is an example of a one-sample bootstrap hypothesis test as
described by Efron and Tibshirani (1994) (page 224).

@ A standard one-sample t test could also be carried out.

@ In using such tests we implicitly assume that the residuals form an
identically distributed sample.

@ This would be true under the null hypothesis if we also assume an iid
innovations model structure as in (10).
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Example

@ Simulation Experiment. The true data generating mechanism is a
GARCH(1,1) model with Student t innovations with 4 degrees of freedom.

@ Models are estimated using windows of 1000 past data but are only
refitted every 10 steps.

@ Model A. Forecaster uses an ARCH(1) model with normal innovations.
This is misspecified with respect to the form of the dynamics and the
distribution of the innovations.

@ Model B. Forecaster uses a GARCH(1,1) model with normal innovations.
This is misspecified with respect to the distribution of the innovations.

@ Model C. Forecaster uses a GARCH(1,1) model with Student ¢
innovations. He has identified correct dynamics and distribution but still
has to estimate the parameters of model.

@ The aim is to estimate the 97.5% VaR and expected shortfall of Fy,, || #,.
@ Binomial test p-values for A, B and C are 0.21, 0.07, 0.35.
@ Shortfall t-test p-values for A, B and C are 0.00, 0.00, 0.41.
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Residuals Model B
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Residuals Model C

: I “ IITL‘M‘\ J\ ‘1
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Acerbi-Szekely Test

@ Acerbi and Szekely (2014) suggest the use of a Monte Carlo hypothesis
test; see Davison and Hinkley (1997) (page 140).

@ This test may be applied to either set of residuals and we describe its
applicationto {Si1 : t=1,...,m}.
@ We consider the hypotheses

Ho : Fin(X)=FLm(X), x>VaR,, t=1,....m (12
Hy (S,H)z t=1,....,m (with > for some t).

@ The observed value for the test statistic is

m. m ot
So=m"'> Sy=m"Y hP(VaR,, ES,, Li1)
t=1 =

@ We generate a random sample from the distribution of Sy under the null
hypothesis and compare with Sy
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Acerbi-Szekely Test Procedure

@ We generate Lpr1 from I?me fort=1,...,mandj=1,...,n. Since
only the tail of the model is specified under Hy and the test statistic does

not depend on the exact values of LﬁH when Lgf+)1 < VaR it suffices to

generate any value k < VaR with probability « and a value from the

conditional distribution FL ol SVARL 7, with probability (1 — «).

@ For each Monte Carlo sample indexed by j we compute

m

'—m—‘Zh (VaR,,ES. L))

© Estimate p-value by fraction of the values Sy, S(), ..., S(" greater than
or equal to Sy.

This test has the advantage that we do not have to assume the residuals are
identically distributed.

It has the disadvantage that we have to record details of the tail models used
at each time point in order to generate Monte Carlo samples.
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Results Model B
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Results Model C
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Elicitability and Scoring Functions

@ The elicitability concept has been introduced into the backtesting
literature by Gneiting (2011); see also important papers by Bellini and
Bignozzi (2013) and Ziegel (2015).

@ A key concept is that of a scoring function S(y, /) which measures the
discrepancy between a forecast y and a realized loss /.

@ Forecasts are made by applying real-valued statistical functionals T
(such as mean, median or other quantile) to the distribution of the loss F;
to obtain the forecast y = T(Fy).

@ Suppose that for some class of loss distribution functions a real-valued
statistical functional T satisfies

T(F) = argmin | S(y.D4F() = argminE(S(.L) (13

for a scoring function S and any loss distribution F; in that class.
@ Suppose moreover that T(F;) is the unique minimizing value.
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Elicitability and Calibration Functions

@ The scoring function S is said to be strictly consistent for T.
@ The functional T(F,.) is said to be elicitable.
@ Note that (13) implies that

%E(sw, 1) — E(h(T(F.). L)) = 0

- / %S(y, NaFL()

y=T(F1) y=T(F)

where h is the derivative of the scoring function.

@ Thus elicitability theory also indicates how we may derive calibration
functions for hypothesis tests involving T(F;).
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Elicitability: Examples

@ The VaR risk measure corresponds to T(F;) = F/ («). For any
0 < « < 1 this functional is elicitable for strictly increasing distribution
functions. The scoring function

SA(y, 1) = Mu<yy —alll =yl (14)

is strictly consistent for T.

@ If we take the negative of the derivative of this function with respect to y
we get the calibration function h,(y, /) in (5).

@ The a-expectile of L is defined to be the risk measure that minimizes
E (S%(y, L)) where the scoring function is

Sa(y.1) = Nusyy —al(l = )2 (15)

This risk measure is elicitable by definition.

@ Bellini and Bignozzi (2013) and Ziegel (2015) show that a risk measure is
coherent and elicitable if and only if it is the a-expectile risk measure for
a > 0.5; see also Weber (2006). Expected shortfall is not elicitable.
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Elicitability in Backtesting Context

@ VaR! minimizes
E (S2(VaRY, L) | 71)

for the scoring function in (14). We refer to S9(VaR!,, L;,1) as a
(theoretical) VaR score.

@ The (theoretical) VaR scores for the realization of the GARCH process
can be calculated.

@ For the GARCH process it may be shown that
S3(VaRy, Li11) = 011152(qa(2), Zi41)
where q,(Z) denotes the a-quantile of the innovation distribution.
@ Since the theoretical VaR scores form a stationary and ergodic process
m

im 3" S7(VaRL, Lii1) = E(0)E (S1(au(2), 2)).

m—oo M

t=1
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VaR Scores for GARCH
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Model Comparison

@ Assume VaRﬁM is replaced by an estimate at each time point and consider
the VaR scores {Sg(\Té\R;, Liy1):t=1,....m}
@ These can be used to address questions of relative and absolute model
performance.
@ The statistic m
Q- ,1,72 SI(VaR, L)

can be used as a measure of relative model performance.

— tA
@ If two models A and B deliver VaR estimates {VaR, ,t=1,...,m} and
——tB
{VaR, ,t=1,..., m} with corresponding average scores Q} and Qf,

then we expect the better model to give estimates closer to the true VaR
numbers and thus a value of @ that is lower.

@ Of course, the power to discriminate between good models and inferior
models will depend on the length of the backtest.
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Model Validation
@ We can also consider the question of whether a score indicates that any
particular model is good enough.
@ One approach to this problem is to use the score as the basis of a

goodness-of-fit test. The hypotheses could be formulated as
Ho : /F\L[+1‘fI:FLt+1‘-FI’ t:1,...,m,
Hi : Fi. 7 # Fi. 7 foratleastsome t.
@ Note that the model is fully specified under the null hypothesis in contrast

to the test of tail fit set out in (12). This framework allows us to carry out
the following Monte Carlo test.

@ We generate L /4 under Hy. That is we generate Lt+1 from I:'me for
t=1,....m and j=1,....n

Q For each Monte Carlo sample we compute
Q¥ = m~' " S4(VaR, L9,

© We estimate p-value by fraction of the values Qp, Q. ..., Q(™ that are
greater or equal to Q.
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Monte Carlo Goodness-of-Fit Using VaR Scores
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Realized p-Values

We briefly consider an alternative to backtests based on expected
shortfall.

Let Ury1 = Fr,., 17 (Ley1) for t = 0,1,2,.... Under continuity assumptions,
the process (U;):en is a process of iid standard uniform variables.
Denoting the estimated model at time ¢ by IA:LM;, as usual, we define
realized p-values by U 1 = F,., 7 (Ley1) fort =0,1,2,....

Realized p-values effectively contain information about VaR violations at
any level a:

T =
U1 >a <= Ly > Fme(a)

if FL,,. 7 is strictly increasing and continuous.
It is possible to transform uniform variables to any scale. For example, if
we define Z; 1 = ®~'(U;44), where @ is the standard normal df, then we

would expect that the (Z) variables are iid standard normal. Berkowitz
(2001) has proposed a test based on this fact.

AIM (HWU) Backtesting and Elicitability QRM Book Launch 48/55



Berkowitz Test
@ The realized p-values can be truncated by defining
U;ZH = min (max (Um,om) ,ag) 0<o<ap < 1.
@ Applying the probit transformation we obtain truncated z values:
Zig =o' (Ury), t=0,1,2,....

@ Let TN(u, 02, ki, k2) denote a normal distribution truncated to [k, k.

@ Under the null hypothesis of correct estimation of the loss distribution, the
truncated z-values are iid realizations from a TN(0,1, ¢~ (1), o~ (az))
distribution.

@ Berkowitz applies one-sided truncation and uses a likelihood ratio test to
test the null hypothesis against the alternative that the truncated z values
have an unconstrained TN(u, o2, ®~'(a4), o) distribution.

@ This can be extended to a joint test of uniformity in the tail and
independence by making x (and possibly o) time dependent.
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Conclusions |

@ Value-at-Risk has special properties that make it particularly natural to
backtest. Namely, the violation process forms a Bernoulli trials process
under any reasonable model for the losses.

@ The lack of a natural calibration function for expected shortfall, which is a
consequence of the lack of elicitability, means that expected shortfall can
not be backtested in isolation.

@ However, it is feasible to develop joint backtests of ES and VaR.

@ These can detect deficiencies of tail models that are not detected by
backtesting VaR at a single level.

@ The simplest tests based on expected shortfall (bootstrap test and t-test)
require some additional assumptions concerning data generating
mechanism.

@ The Monte Carlo test of Acerbi-Szekely makes no strong assumptions
but requires extensive storage of data.

@ We should be aware that ES estimation procedures lack robustness.
@ Tests of realized p-values may be an interesting alternative.

AIM (HWU) Backtesting and Elicitability QRM Book Launch 51/55



Conclusions About Use of Elicitability Theory

@ Average VaR scores can be used as comparative measures to identify
superior models.

@ The average VaR score can also be used as the basis of a Monte Carlo
goodness-of-fit test.

@ Joint tests based on VaR scores at different confidence levels could be
an alternative to joint tests of VaR and ES.

@ The VaR score does have an attractive feature not shared by most other
metrics.

@ If a forecaster genuinely wanted to minimize a VaR score, he would be
impelled to do the best possible job of estimating conditional quantiles of
the loss distribution. It would be the optimal way to act.

@ This suggests imposing financial penalties or fees on banks that are
proportional to the scoring function!

@ This relates to ideas of Osband (1985) about eliciting truth-telling; see
also Osband and Reichelstein (1985).
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