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Abstract
The third moment of a random vector is a matrix which conveniently

arranges all moments of order three which can be obtained from the ran-
dom vector itself. We investigate some properties of its singular value de-
composition. In particular, we show that left eigenvectors corresponding
to positive singular values of the third moment are vectorized, symmetric
matrices. We derive further properties under the additional assumptions
of exchangeability, reversibility and independence. Statistical applications
deal with measures of multivariate skewness.
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1 Introduction

Let x = (X1; :::; Xd)
T be a d�dimensional random vector satisfying E

���X3
i

��� <
+1, for i = 1; :::; d. The third moment of x is the d2 � d matrix M3 (x) =
E
�
x
 xT 
 x

�
, where "
" denotes the Kronecker product (see, for example, De

Luca and Loper�do, 2012). In the following, when referring to the third moment
of a random vector, we shall implicitly assume that all appropriate moments
exist. The third central moment of x, also known as its third cumulant, is the
third moment of x��, where � is the mean of x. Statistical applications of the
third moment include, but are not limited to: factor analysis (Mooijaart, 1985),
density approximations (Van Hulle, 2005), Independent Component Analysis
(De Lathauwer et al, 2001), �nancial econometrics (De Luca and Loper�do,
2012), cluster analysis (Loper�do, 2013).
No one of the above authors studied the singular value decomposition (SVD,

henceforth) of the third moment, which is a fundamental tool in both mathe-
matics and statistics. The role of the SVD in mathematics is well reviewed by

1



Martin and Porter (2011). In Statistics, the SVD provides the theoretical foun-
dations for the biplot (Gower, 2004), canonical correlation analysis (Mardia et
al, 1979, page 283) and correspondence analysis (Greenacre and Hastie, 1987).
This paper examines the SVD of the third multivariate moment both in the

general case and under additional assumptions. In the general case, it shows that
left eigenvectors corresponding to positive singular values of the third moment
are vectorized, symmetric matrices. Additional properties are derived for �nite
realizations of well-known stochastic processes, which nicely mirror those of
their second moments. Finally, the paper shows that the SVD is instrumental
in obtaining properties of main measures of multivariate skewness.
The rest of the paper is organized as follows. Section 2 discusses the SVD for

the third moment, in the general case. Section 3 obtains some inequalities for
measures of multivariate skewness. Sections 4 and 5 deal with third moments
under independence and invariance assumptions, respectively. Section 6 shows
that theorems and proofs similar to those in Section 2 also hold for fourth
moments and cumulants. Section 7 applies results in section 3 to �nancial data.

2 Decomposition

This section investigates the SVD and a related decomposition of the third
multivariate moment. The symbols Id, 1d and 0d will denote the d� d identity
matrix, the d�dimensional vector of ones and the d�dimensional vector of zeros,
respectively. Also, vecA = vec(A) will denote the vectorization operator, which
stacks the columns of the matrix A on top of one another (Rao and Rao, 1998,
page 200). The row vector vecTA will denote the transpose of the vectorized
matrix A, while the column vector vecAT will denote the vectorized transpose
of A.
We shall now recall some fundamental properties of the Kronecker product

which we shall use repeatedly in the following proofs (see, for example, Rao and
Rao, pages 194-201): (P1) the Kronecker product is associative: (A
B)
C =
A
 (B 
 C) = A
B 
 C; (P2) if matrices A, B, C and D are of appropriate
size, then (A
B) (C 
D) = AC
BD and (A
B)�1 = A�1
B�1 if both A
and B are invertible matrices; (P3) If a and b are two vectors, then abT , a
 bT
and bT 
 a denote the same matrix; (P4) for any two m � n matrices A and
B it holds true that tr

�
ATB

�
= vecT (B)vec(A) and when A = B, we have

tr(ATA) = �21 + ::: + �
2
d with �1, ..., �d being the singular values of A; (P5)

vec (ABC) =
�
CT 
A

�
vec (B), when A 2 Rp�Rq; B 2 Rq�Rr; C 2 Rr�Rs;

(P6) tr(A
B) = tr(A)tr(B), with A and B being two m�m matrices. Finally,
we shall recall some properties of the commutation matrix Kp;q 2 Rpq � Rpq
(Magnus and Neudecker, 1979): (P7) vecMT = Kp;qvecM for any p� q matrix
M ; (P8) KT

p;q = Kq;p; (P9) Kp;p = K
�1
p;p.

Eigenvectors associated with positive eigenvalues of the fourth moment ma-
trix are vectorized, symmetric matrices (Loper�do, 2011). The following theo-
rem shows that a similar result holds for the third multivariate moment.
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Theorem 1 Left singular vectors corresponding to positive singular values of
the third multivariate moment are vectorized, symmetric matrices.

Proof. Let M3 = E
�
x
 xT 
 x

�
be the third moment of a d�dimensional

random vector x, and let Kp;q be a pq � pq commutation matrix. The ma-
trix x 
 xT 
 x can be represented as vec

�
xxT

�
xT , using standard proper-

ties of the Kronecker product and the vectorization operator, so that M3 =
E
�
vec

�
xxT

�

 xT

�
. Since xxT is a symmetric matrix, by property P7 we have

vec
�
xxT

�
= Kd;dvec

�
xxT

�
and M3 = E

�
Kd;dvec

�
xxT

�

 xT

�
. Apply now lin-

ear properties of the expected value to obtain M3 = Kd;dE
�
vec

�
xxT

�

 xT

�
=

Kd;dM3. Let � be a positive singular value corresponding to the left singular
vector l of M3: Ll = �l, where L = M3M

T
3 . Finally, let l be the vectorized,

d�d matrix A. SinceM3 = Kd;dM3 we have L = Kd;dM3M
T
3 and Kd;dLl = �l.

By properties P8 and P9, the matrix Kd;d is at the same time symmetric and
orthogonal, so that Ll = �Kd;dl . The above equations lead to the following
one: l = Kd;dl, which can be represented as vecA = Kd;dvecA. By property P7
this equation is satis�ed if and only if A is a symmetric matrix.
Some caution is needed when dealing with third cumulants which are rank

de�cient, that is when some singular values equal zero. Left singular vectors cor-
responding to null singular values might or might not be represented as vector-
ized, real and symmetric matrices. The following example illustrates the point.
Let K3 = � 
 �T 
 �, where � 2 Rd0, be the third cumulant of a d�dimensional
random vector x. This might happen, for example, when x is either a skew-
normal random vector (see, for example, De Luca and Loper�do, 2012) or a
location mixture of two normal distributions (Loper�do, 2013). Also, let v1, ...,
vd�1 be d�dimensional real vectors satisfying vTi � = 0, vTi vj = 0 and vTi vj = 1
for i 6= j and i; j = 1, :::, d� 1. It easily follows that left singular vectors corre-
sponding to null singular values might be either of the form vec

�
�vTi

�
= �
 vi,

vec
�
vTi �

�
= vi
�, vec

�
vjv

T
i

�
= vj
vi or vec

�
viv

T
i

�
= vi
vi, with � = �= k�k,

i 6= j and i; j = 1, :::, d � 1. Only vectors of the latter form are vectorized,
symmetric real matrices.
The next theorem builds upon the previous one to obtain another decompo-

sition for the third multivariate moment.

Theorem 2 The third moment of a d�dimensional random vector might be
represented as �1V1 
 u1 + ::: + �dVd 
 ud, wherekVik = kuik = 1, tr (ViVj) =
uTi uj = 0, Vi = V

T
i 2 Rd � Rd, ui 2 Rd, �i 2 R+, for i 6= j and i; j = 1; :::; d.

Proof. Let M3 be the third moment of the d�dimensional random vector
x = (X1; :::; Xd)

T . We have M3 = E
�
x
 xT 
 x

�
by de�nition, that is M3 =

E
�
x
 xT 
 x

�
by property P3. Hence we can representM3 as the block column

vector (B1; :::; Bd)
T , where Bi = E

�
Xixx

T
�
2 Rd � Rd, i = 1, :::, d. The

matrix M3 might also be represented as E
�
x
 x
 xT

�
by recalling property

P3, so that M3 = [E (X1x
 x) ; :::; E (Xdx
 x)]. The vector E (Xix
 x) is
just the vectorized matrix Bi, since vec

�
xxT

�
= x 
 x. We conclude that the

i�th column of M3 is the vectorized d� d matrix Bi. Equivalently, MT
3 is the
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rearrangement of M3, as de�ned by Van Loan and Pitsianis (1993). They also
showed that any block matrixA admits the representationB1
C1+:::+Br
Cr if
and only if its permuted version admits the representation vec (B1)
vecT (C1)+
:::+vec (Br)
vecT (Cr). By Theorem 1, the singular value decomposition of the
third moment is �1vec (V1)uT1 +:::+�rvec (Vr)u

T
r , where Vi is a d�d symmetric

matrix. Apply now ordinary properties of transposition and vectorization to
obtain MT

3 = �1vec (u1)
vecT (V1)+ :::+�rvec (ur)
vecT (Vr). By the above
mentioned propertiy of rearrangements we haveM3 = �1u1
V1+:::+�rur
Vr.
By de�nition, vec (Vi) and ui are the left and right singular vectors of M3,
satisfying vecT (Vi) vec (Vi) = uTi ui = 1 and vecT (Vi) vec (Vj) = uTi uj = 0 for
i; j = 1; :::; n and i 6= j. Apply now property P4 to show that kVik = kuik = 1
and tr (ViVj) = uTi uj = 0 for i; j = 1; :::; n and i 6= j.

3 Skewness

This section uses the singular value decomposition of the third standardized
moment to investigate some relationships between well-known measures of mul-
tivariate skewness. The third standardized moment (or cumulant) of the random
vector x is the the third moment of z = (Z1; :::; Zd)

T = ��1=2 (x� �), where
��1=2 is the inverse of the positive de�nite square root �1=2 of � = var (x),

which is assumed to be positive de�nite: �1=2 =
�
�1=2

�T
, �1=2 > 0 and

�1=2�1=2 = �.
Mardia (1970) de�ned the skewness of a random vector x as �M1;d (x) =

E
h�
zTw

�3i
, where w = ��1=2 (y � �) ; z is the same as above while x and y are

two d�dimensional, independent and identically distributed random vectors.
Mardia�s skewness is by far the most popular measure of multivariate skew-
ness. Its statistical applications include multivariate normality testing (Mardia,
1970), assessing the robustness of MANOVA statistics (Davis, 1980) and density
approximation (Van Hulle, 2005).
Another measure of multivariate skewness is �P1;d (x) = E

�
zT zzTwwTw

�
,

where z and w are the same as above. It has been independently proposed by
several authors (Davis, 1980; Isogai, 1983; Mori et al, 1993). In this paper, we
shall refer to �P1;d (x) as to partial skewness, to remind that it does not depend
on the cross-product moment E (ZiZjZk) when i, j, k di¤er from each other.
Partial skewness is far less popular than Mardia�s skewness. Like the latter
measure, however, it has been applied to multivariate normality testing (Henze
1997) and to the assessment of the robustness of MANOVA statistics (Davis,
1980).
Malkovich and A�� (1973) de�ned the multivariate skewness of a random

vector x as the maximum value �D1;d (x) attainable by �1
�
cTx

�
, where c is a

nonnull, d�dimensional real vector and �1 (Y ) is the squared third standardized
moment of the random variable Y . In this paper, we shall refer to �D1;d (x) as
to directional skewness, to remind that it is the maximum attainable skewness
by a projection of the random vector x onto a direction. Statistical applications
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of directional skewness include normality testing (Malkovich and A��, 1973),
projection pursuit and cluster analysis (Loper�do, 2013).
The above mentioned measures of multivariate skewness have been mainly

used for testing multivariate normality, are invariant with respect to one-to-
one a¢ ne transformations and generalize to the multivariate case a widely used
measure of univariate skewness. To the best of our knowledge, no one investi-
gated the relationships between Mardia�s, partial and directional skewness. The
following theorem addresses the problem by means of inequalities.

Theorem 3 Let �M1;d, �
P
1;d and �

D
1;d be the Mardia�s skewness, partial skewness

and directional skewness of a d�dimensional random vector x. Then they satisfy
the inequalities �D1;d � �M1;d and �P1;d=d � �M1;d.

Proof. Without loss of generality we can assume that x is a standardized
random vector, so that its third moment M3 is also its third standardized cu-
mulant. Also, let vi and ui be the left and right singular vectors associated
with the i�th singular value �i, with i = 1; :::; d and �1 � ::: � �d. From
Theorem 1 we know that vi = vec (Vi), where Vi = V Ti 2 Rd � Rd, i = 1, :::,
d. Mardia�s skewness of x might be represented as the squared Frobenius norm
of the third standardized cumulant: �M1;d (x) = kM3k2 = tr

�
M3M

T
3

�
: Property

P4 implies that �M1;d = �
2
1+ :::+�

2
d. Directional skewness is the maximum value

attained by the square of (c
 c)T M3c over the set of d�dimensional vectors of
unit length (Loper�do, 2013). The bilinear form aTM3b, where a 2 Rd

2

, b 2 Rd
and kak = kbk = 1, attains its maximum value �1 when a = v1 and b = u1,
by elementary properties of the singular value decomposition. It easily follows
that �D1;d � �21 � �M1;d and this completes the �rst part of the proof.
Mori et al (1993) introduced the vector-valued measure of skewness � =

E
�
xTxx

�
, whose i�th component is the sum E

�
X2
iX1

�
+:::+E

�
X2
iXd

�
, for i =

1, :::, d. Equivalently, �i = tr (Bi), where Bi = E
�
Xixx

T
�
. Basic properties of

vectorized matrices imply that �i = tr (Bi) = vecT (Id) vec (Bi). From the proof
of Theorem 2 we know that M3 might be represented as [vec (B1) ; :::; vec (Bd)].
Hence we have � = MT

3 vec (Id). The squared norm of � equals �P1;d: �
P
1;d =

vecT (Id)M3M
T
3 vec (Id) (Mori et al, 1993). By Theorem 2 we haveM

T
3 vec (Id) =

�1
�
V T1 
 uT1

�
vec (Id)+ :::+�d

�
V Td 
 uTd

�
vec (Id), which can be simpli�ed into

�1V1u1 + ::: + �dVdud by recalling that vec (a) = a for any vector a and
property P5. Then



MT
3 vec (Id)



2 of MT
3 vec (Id) is vec

T (Id)M3M
T
3 vec (Id),

that is the sum of all products �i�juTj VjViui, for i; j = 1, :::, d. By def-
inition, we have kVik = kuik = 1. Hence the norm of the vector Viui is
never greater than 1: kViuik = uTj VjViui � 1. As a direct consequence,

MT

3 vec (Id)


2 is never greater than the sum of the products �i�j , for i; j = 1,

:::, d, that is (�1 + :::+ �d)
2. A squared sum of real values is never greater

than the sum of the squared values themselves, multiplied by their number
(�1 + :::+ �d)

2 � d
�
�21 + :::+ �

2
d

�
. We shall now complete the proof by recall-

ing that Mardia�s skewness equals the trace ofM3M
T
3 :


MT

3 vec (Id)


2 � d ��M1;d

and �P1;d=d � �M1;d.
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A natural question to ask is whether Mardia�s skewness, partial skewness
and directional skewness might be equal to one another. The answer is in the
a¢ rmative, as shown in the following theorem.

Theorem 4 Mardia�s skewness, directional skewness and partial skewness of
a random vector whose third cumulant is a rank one matrix are equal to each
other.

Proof. Without loss of generality we can assume that x = (X1; :::; Xd)
T is

a standardized random vector, so that its third moment M3 is also its third
standardized cumulant. As shown in the proof of Theorem 2, M3 is the block
column vector (B1; :::; Bd)

T , where Bi = E
�
Xixx

T
�
2 Rd � Rd, i = 1, :::,

d. By assumption, M3 is a matrix of rank one, meaning that it has only a
nonzero singular value and admits the factorization �vuT , with � 2 R, u 2 Rd,
v 2 Rd2 and kvk = kuk = 1. Without loss of generality, v might be represented
as a vectorized, symmetric, d � d matrix A whose columns are the vectors ai:
v = vec (A), A = (a1; :::; ad), ai 2 Rd. As a direct consequence, we have
Bi = aiu

T , which might be simpli�ed into Bi = ciuuT , with ci 2 R, by noticing
that Bi is a symmetric matrix. Since the columns of A are proportional to each
other, it admits the factorization ucT , where c = (c1; :::; cd)

T . By Theorem 1, A
is a symmetric matrix, so that c = u, v = vec

�
uuT

�
= u
u andM3 = u
u
uT .

We shall now consider the three measures of multivariate skewness, begin-
ning with Mardia�s skewness. From the proof of Theorem 3 we know that it
equals the sum of the squared singular values of M3. By assumption, M3 is
a matrix of rank one so that Mardia�s skewness equals the square of the only
nonzero singular value: �M1;d = �

2:We shall now consider partial skewness, that
is �P1;d (x) = vecT (Id)M3M

T
3 vec (Id). Property P5 leads us to M

T
3 vec (Id) =

�
�
uTu

�
u. As a direct consequence, partial skewness is �P1;d (x) = �2, that

is Mardia�s skewness, thus completing the second part of the proof. We shall
now consider the directional skewness of x, that is the maximum of �1

�
cTx

�
over the set of all d�dimensional vectors of unit length, where �1 (Y ) is the
squared third standardized moment of the random variable Y . By the above
mentioned properties of the Kronecker product and the de�nition of M3 we
have (a
 a)T M3a = �

�
uTa

�3
, where a 2 Rd, which attains its maximum

when a and u are proportional to each other. From the proof of Theorem 3 we
know that directional skewness is the maximum value attained by the square
of (c
 c)T M3c over the set of d�dimensional vectors of unit length, so that
�D1;d = �

2, which again equals Mardia�s skewness.

Random vectors whose third standardized moments have only one nonzero
singular value appear in hidden truncation models, �nite mixture models and
multivariate density approximations (Christiansen and Loper�do, 2014).
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4 Independence

Results in this section deal with the third moment�s SVD under independence
assumptions. Theorems 5 and 6 deal with left singular vectors and singular
values, respectively. Some possible applications to inference for linear processes
are brie�y sketched at the end of the section.

Theorem 5 Let x = (X1; :::; Xd)
T be a vector of mutually independent random

variables with �nite third moments. Also, let y = Ax be a linear transformation
of x, where A is a d� d, nonsingular matrix. Then left singular vectors of the
third standardized cumulant of y are vectorized, symmetric matrices of rank one.

Proof. Without loss of generality we can assume that X1, ..., Xd are stan-
dardized random variables: E (Xi) = 0 and var (Xi) = 1 for i = 1, :::, d. Let
D = diag

�

21; :::; 


2
d

�
, where E

�
X3
i

�
= 
i for i = 1, :::, d, be the diagonal

matrix whose i�th diagonal element is the squared third moment of Xi. Also,
let Eij be the d � d matrix whose only nonzero element is one and belongs to
the i�th row and the j�th column of Eij , for i; j = 1, :::, d. By assumption
X1; :::; Xd are mutually independent, so that E (XiXjXk) = 0 whenever either
i 6= j, i 6= k or k 6= j. As a direct consequence, the third moment of x might
be represented as a block column vector: M3;x = f
iEiig, for i = 1, :::, d. Let
z = ��1=2y, where ��1=2 is the inverse of the positive de�nite square root �1=2

of var (y) = � = AAT : �1=2 =
�
�1=2

�T
, �1=2 > 0 and �1=2�1=2 = �. The stan-

dardized random vectors z and x are one-to-one linear functions of each other,
so that there exists a d� d orthogonal matrix H such that z = Hx. The third
moment of z is thenM3;z =

�
HT 
HT

�
M3;xH (De Luca and Loper�do, 2012).

It follows that MT
3;zM3;z = H

TMT
3;x (H 
H)

�
HT 
HT

�
M3;xH = HTDH, by

the de�nition of D, well-known properties of the Kronecker product and orthog-
onality of H. Then the i�th singular value of M3;z and the associated right
singular vector are j
ij and hi, where hi is the i�th column of H. Similarly,
we haveM3;zM

T
3;z =

�
HT 
HT

�
diag [vec (D)] (H 
H), where diag [vec (D)] is

the d2�d2 diagonal matrix whose diagonal elements are those in the vectorized
matrix D. The matrix M3;zM

T
3;z can then be decomposed into the sum of all

products dij (hi 
 hi)
�
hTj 
 hTj

�
, for i; j = 1, :::, d, where dij is the element on

the i�th row and the j�th column of the matrix D. By de�nition, dii = 
2i for
i = 1, :::, d and dij = 0 for i 6= j, i; j = 1, :::, d, thus leading to the simpler
factorization M3;zM

T
3;z = 


2
1 (h1 
 h1)

�
hT1 
 hT1

�
+ :::+ 
2d (hd 
 hd)

�
hTd 
 hTd

�
.

We conclude that the left singular vector of M3;z associated with the singular
value j
ij is hi 
 hi, which is a vectorized, symmetric matrix of rank one.
....

Theorem 6 Let y = Ax, where A is a d � d, nonsingular matrix and x =
(X1; :::; Xd)

T is a vector of mutually independent random variables. Also, let 
i
be the third standardized moment of Xi, for i = 1, ..., d. Then the directional
skewness of y is �D1;d = max

�

21; :::; 


2
d

�
, while Mardia�s skewness and partial

skewness of y are �M1;d = �
P
1;d = 


2
1 + :::+ 


2
d.
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Proof. The notation in this proof is the same as in the previous one. We
shall �rst consider Mardia�s skewness. The identity M3;zM

T
3;z = 
21h1h

T
1 


h1h
T
1 + :::+ 


2
dhdh

T
d 
 hdhTd follows from M3;zM

T
3;z = 


2
1 (h1 
 h1)

�
hT1 
 hT1

�
+

:::+ 
2d (hd 
 hd)
�
hTd 
 hTd

�
in the previous proof and property P2. Recall now

property P6 and that Mardia�s skewness equals the trace of M3M
T
3 , implying

that �M1;d = 

2
1tr

2
�
h1h

T
1

�
+ :::+ 
2dtr

2
�
hdh

T
d

�
= 
21

�
hT1 h1

�2
+ :::+ 
2d

�
hTd hd

�2
.

Since h1, ... hd are real vectors of unit norm Mardia�s skewness is �M1;d =

21 + :::+ 


2
d and this completes the �rst part of the proof.

We shall now consider partial skewness. We have
�
hTi 
 hTi

�
vec (Id) = h

T
i hi

for i = 1, :::, d by property P5. It follows that �P1;d = vec
T (Id)M3M

T
3 vec (Id) =


21
�
hT1 h1

�2
+ :::+ 
2d

�
hTd hd

�2
= 
21+ :::+ 


2
d and this completes the second part

of the proof.

We shall now consider directional skewness �D1;d, that is
h
(c
 c)T M3;zc

i2
for

an appropriate d�dimensional vector c of unit length (Loper�do, 2013). The
singular value decomposition M3;z = j
1j (h1 
 h1)hT + ::: + j
dj (hd 
 hd)hT

implies that (c
 c)T M3;zc = j
1j
�
cTh1

�3
+ ::: + j
dj

�
cThd

�3
. Without loss of

generality we may assume that c maximizes (c
 c)T M3;zc. Without loss of
generality we can also assume that 
1 > 0 and j
1j � j
ij for i = 2, ..., d.
By de�nition, h1, ..., hd are unit-length vectors which constitute an orthogonal
basis for Rd, so that c = w1h1 + ::: + wdhd for some w1, ..., wd satisfying
w21 + ::: + w

2
d = 1. It also implies that (c
 c)

T
M3;zc = j
1jw31 + ::: + j
djw3d,

which is maximized if and only if w1 = 1 and wi = 0 for i = 2, ..., d. As a direct
consequence, �D1;d = 


2
1.

We shall now hint to a possible application of the above results to infer-
ence for linear processes. Suppose we want to check whether the random
process fYt; t 2 Zg might be represented by means of the linear transforma-
tions yn = (Yn; :::; Yn+k�1)

T
= Anxn for some sequence fAn; n 2 Ng of k � k,

nonsingular matrices An and for a random vector xn = (Xn; :::; Xn+k�1)
T be-

longing to a random process fXt; t 2 Zg, whose components are independent
random variables satisfying E (jXtj) < +1. Such a process has been investi-
gated by Chen and Deo (2004) within the context of time series analysis.
To check whether fWt; t 2 Zg admits the above representation we might

compare Mardia�s skewness and partial skewness of its realizations: if they
are signi�cantly di¤erent we reject the corresponding hypothesis. Similarly,
we might use left eigenvectors of third cumulants of standardized realizations.
Sampling distributions might be obtained by means of bootstrap methods for
dependent data. Technical developments of the proposed inferential procedure
are de�nitely outside the scope of the present paper, which is focused on alge-
braic statistics.
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5 Invariance

This section investigates the singular value decomposition of the third moment
when the underlying distribution satis�es the invariance assumptions of either
exchangeability or reversibility.
A random vector is said to be exchangeable if its distribution is invariant

with respect to permutations of its elements� indices. Loper�do et al (2007)
and Loper�do and Guttorp (2008) discuss applications of skewed, exchangeable
random vectors to reliability theory and environmental sciences, respectively.
When moments of appropriate order exist, mean and variance of an ex-

changeable random vector are proportional to a vector of ones and a corre-
lation matrix with identical o¤-diagonal elements. The structure of its third
moment is slightly more complicated. In the general case, the third moment
of a d�dimensional random vector contains at most d(d + 1)(d + 2)=6 distinct
elements. However, when the vector itself is assumed to be exchangeable, the
number of distinct elements never exceeds 3.
A matrix is totally symmetric if its diagonal (extra-diagonal) elements are all

equal. At least one eigenvector of the fourth moment matrix of an exchangeable
random vector is a vectorized, totally symmetric matrix (Loper�do, 2011). The
following theorem shows that a similar result also holds for the third moment.

Theorem 7 Let M3 be the third moment of a d�dimensional, exchangeable
random vector. Then there is at most one singular value ofM3 which is di¤erent
from all other singular values, its right singular vector is proportional to a vector
of ones and its left singular vector is a vectorized, totally symmetric matrix.

Proof. Let P� be the d � d permutation matrix corresponding to a permu-
tation � of the �rst d positive integers. Hence the components of P�x are
the components of x, rearranged according to �, and the third moment of
P�x is M3;� = (P� 
 P�)M3 (x)P

T
� (see, for example, De Luca and Loper-

�do, 2012). The matrixMT
3;�M3;� = P�M

T
3 (P� 
 P�)

T
(P� 
 P�)M3P

T
� might

be simpli�ed into MT
3;�M3;� = P�M

T
3 M3P

T
� , since the inverse of (P� 
 P�) is�

PT� 
 PT�
�
= (P� 
 P�)T , by orthogonality of P� and property P2. The ex-

changeability assumption implies that P�x and x are identically distributed,
with identical third moments: M3 = M3;�. As a direct consequence, we have
MT
3 M3 = P�M

T
3 M3P

T
� for any d� d permutation matrix P�, which is possible

if and only if MT
3 M3 is a d � d totally symmetric matrix. As such, one of its

eigenvectors is the d�dimensional vector of ones 1d = (1; :::; 1)T 2 Rd. The as-
sociated eigenvalue is always di¤erent from other eigenvalues of M3, but when
MT
3 M3 is a null matrix (that is whenM3 is a null matrix, too) and whenMT

3 M3

is a diagonal matrix. We have then proved the �rst two parts of the theorem.
We shall now prove the third part of the theorem. By de�nition, the

left singular vector y of M3 associated with the same singular value � of the
right singular vector 1d satis�es M31d = �y. The above mentioned exchange-
ability argument then implies (P� 
 P�)M3P

T
� 1d = �y, which simpli�es to

(P� 
 P�)M31d = �y, since 1d is a vector of ones. Apply now ordinary
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properties of the permutation matrix and the Kronecker product to obtain
(P� 
 P�)�1 = P�1� 
 P�1� = PT� 
 PT� and hence M31d = �

�
PT� 
 PT�

�
y.

By Theorem 1 in Section 2, the d2�dimensional vector y might be represented
as a vectorized, symmetric matrix Y : y = vec (Y ) = vec

�
Y T
�
. Also, recall

property P5 and write M31d = �vec
�
P�Y P

T
�

�
for any d � d permutation ma-

trix P�. Hence we have Y = P�Y P
T
� for any d � d permutation matrix P�,

which holds true if and only if Y is a d� d totally symmetric matrix.

Another invariance property holds true for a reversible process fXt; t 2 Zg,
since the random vectors (Xt1 ; : : : ; Xtn)

T and (X��t1 ; : : : ; X��tn)
T have the

same probability distribution, for all � , t1,. . . , tn 2 Z. With a little abuse of lan-
guage and for the sake of simplicity, we shall refer to a vector (Xt; :::; Xt+n)

T of
random variables from a reversible random process as to a reversible random vec-
tor. A reversible process is also stationary, meaning that vectors (Xt; :::; Xt+n)

T

and (Xt+h; :::; Xt+n+h)
T are identically distributed, for t; h 2 Z and n 2 N.

Stationarity is particularly useful when dealing with moments. For example,
it implies that E (Xt) = E (Xt+h) for t; h 2 Z; so that the expected value of
(Xt; :::; Xt+n) is proportional to a (n+ 1)�dimensional vector of ones. Simi-
larly, stationarity implies that E (XtXt+h) only depends on h, thus making the
covariance matrix of (Xt; :::; Xt+n)

T a symmetric Toeplitz matrix. Interesting
enough, the �rst, second and third moments of a reversible random vector are
completely identi�ed by a scalar, a vector and a matrix, respectively.
The following theorem relates left singular vectors of the third moment to

bisymmetric matrices, that is square matrices which are symmetric about both
of their main diagonals.

Theorem 8 Let M3 be the third moment of a d�dimensional random vector
belonging to a reversible process. Also, let the positive singular values of M3

be di¤erent from each other. Then left singular vectors of M3 are vectorized,
bisymmetric matrices.

Proof. Let x = (X1; :::; Xd)
T be a d�dimensional, reversible random vector

whose third moment is M3. Also, let Jd be the d � d exchange matrix, that is
the d�d permutation matrix whose nonzero entries reside on the counterdiagonal
(Rao and Rao, 1998, page 502). The product Jdx contains the same elements of
x, arranged in reverse order: Jdx = (Xd; :::; X1)

T . The third moment of Jdx is
(Jd 
 Jd)M3J

T
d , by linear properties of the third moment (see, for example, De

Luca and Loper�do, 2012). The random vectors that x and Jdx are identically
distributed, due to the reversibility of x. It follows that x and Jdx have identical
third moments: M3 = (Jd 
 Jd)M3J

T
d .

Let �i be a positive singular value corresponding to the left singular vector
li of M3: M3M

T
3 li = �ili, for i = 1; :::; d. Since M3 = (Jd 
 Jd)M3J

T
d , we

can also write (Jd 
 Jd)M3J
T
d JdM

T
3

�
JTd 
 JTd

�
li = �ili. Equivalently, by or-

thogonality of Jd and by properties P1 and P2, we have M3M
T
3

�
JTd 
 JTd

�
li =

�i
�
JTd 
 JTd

�
li. It follows that the d2�dimensional vector li is the left singular

vector of M3 corresponding to the positive singular value �i if and only the
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d2�dimensional vector
�
JTd 
 JTd

�
li is a left singular vector of M3 correspond-

ing to the same singular value. This is possible only if li =
�
JTd 
 JTd

�
li, by

the assumption that all positive singular values di¤ers from each other. The
identity li =

�
JTd 
 JTd

�
li is equivalent to the following one: Bi = JdBiJTd , by

letting li = vec (Bi), where Bi is a d� d matrix, and by applying property P3.
By Theorem 1, Bi is also a symmetric matrix, so that Bi = JdBTi Jd. Since this
identity characterizes persymmetric matrices (Rao and Rao, 1998, page 503) Bi
is at the same time symmetric and persymmetric, that is bisymmetric.

6 Fourth moment

A natural question to ask is whether results in the previous sections might be
extended to higher-order moments. A complete answer is beyond the scope of
this paper, but the following theorems suggest that it might be in the a¢ rmative,
at least for fourth-order moments. The theorems and their proofs are very
similar to those in Section 2, thus hinting the existence of a general procedure
for dealing with higher-order moments.
Let x = (X1; :::; Xd)

T be a d�dimensional random vector satisfying E
�
X4
i

�
<

+1, for i = 1; :::; d. The fourth moment of x is the d2 � d2 matrix M4 =
E
�
x
 xT 
 x
 xT

�
. The following theorem shows that any fourth moment

can be represented as the sum of tensor products of symmetric, real matrices.

Theorem 9 The fourth moment M4 of a d�dimensional random vector admits
the representation �1
1

1+ :::+�r
r

r, where r = rank (M4), k
ik = 1,
tr (
i
j) = 0, 
i = 
Ti 2 Rd � Rd, �i 2 R+, for i 6= j and i; j = 1; :::; r.

Proof. Let x = (X1; :::; Xd)
T be a random vector whose fourth moment is

M4 =
�
�ijhk

	
, where �ijhk = E (XiXjXhXk) for i; j; h; k = 1; :::; d. Since

M4 is E
�
x
 xT 
 x
 xT

�
by de�nition, it also equals E

�
x
 x
 xT 
 xT

�
,

by property P3. It follows that M4 is a matrix composed by d2 d2�dimensional
row vectors vTk , stacked upon each other:

M4 =

0@ vT1
:::
vTd2

1A (a)

The k�th vector vk has the form E (XiXjx
 x), where i = 1 + [k=d], j =
1 + k � [k=d] and i = [k=d] is the integer part of k=d, for k = 1; :::; d2. The
fourth moment M4 might also be represented as a block matrix fMpqg, where
Mpq =

�
E
�
XpXqxx

T
�	
is a d� d symmetric matrix. The vector vec (Mij) is

vec
�
E
�
XiXjxx

T
�	
= E

�
XiXjvec

�
xxT

�	
= E fXiXj (x
 x)g = vk;

implying that M4 coincides with its rearrangement, as de�ned by Van Loan
and Pitsianis (1993). The fourth moment is a symmetric, positive semide�nite
matrix (see, for example, Loper�do, 2011), so that it admits the representation
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M4 = �1u1u
T
1 + ::: + �ruru

T
r , where �1, ..., �r are the positive eigenvalues

of M4 and u1, ..., ur are the corresponding eigenvectors, which are of unit
norm and mutually orthogonal. Van Loan and Pitsianis (1993) showed that
any block matrix A admits the representation B1 
 C1 + ::: + Br 
 Cr if and
only if its permuted version admits the representation vec (B1) 
 vecT (C1) +
::: + vec (Br) 
 vecT (Cr). Since M4 coincides with its rearrangement and u1,
..., ur are vectorized, symmetric matrices (Loper�do, 2011) we may also write
M4 = �1vec (
1)
vecT (
1)+ :::+�rvec (
r)
vecT (
r), where vec (
i) = ui,

i = 
Ti 2 Rd � Rd for i = 1; :::; r and k
ik = 1. Property P4 implies that
k
ik = 1 and tr (
i
j) = 0 for i; j = 1; :::; n and i 6= j.

The fourth moment of a random vector is closely related to the fourth cu-
mulant of the random vector itself. More precisely, let x = (X1; :::; Xd)

T be
a d�dimensional random vector satisfying E

�
X4
i

�
< +1, for i = 1; :::; d.

Its fourth cumulant is the d2 � d2 block matrix K4 = fMpqg, where Mpq =
logE

�
exp

�
�tTx

��
=@tp@tq@t@t

T , � =
p
�1 and tT = (t1; :::; td), for p; q = 1; :::; d.

Equivalently, the element in the i�th row and in the j�th column of the
(h; k)�th block is �ijhk = logE

�
exp

�
�tTx

��
=@ti@tj@th@tk, for i; j; h; k = 1; :::; d.

Loper�do (2011) showed that eigenvectors associated to positive eigenvalues of
the fourth moment of a d�dimensional random vectors are vectorized, symmet-
ric real matrices. The following theorem shows that a similar property holds for
fourth cumulants.

Theorem 10 Eigenvectors corresponding to nonzero eigenvalues of fourth mul-
tivariate cumulants are vectorized, symmetric matrices.

Proof. The fourth cumulant of a d�dimensional random vector x with mean �
and variance � is K4 =M4�(Id2 +Kd;d) (�
 �)�vec (�) vecT (�), whereM4

is the fourth centered moment of x (see, for example, Loper�do, 2011). First,
recall the identity M4 = Kd;dM4, from the �rst part of Theorem 2 in Loper�do
(2011). Second, use property P7 and symmetry of the covariance matrix to show
that vec (�) = Kd;dvec (�). The identityKd;dKd;d = Id2 follows from properties
P8 and P9. We can then write K4 = Kd;dK4 and Kd;dK4v = �v, where � is the
nonzero eigenvalue of K4 corresponding to the eigenvector v: K4v = �v. Since v
is a d2� dimensional vector, it may be represented as a vectorized, d�d matrix
A. The matrix Kd;d is at the same time symmetric and orthogonal, so that
K4v = �Kd;dv. The above equations lead to the following one: v = Kd;dv, which
can be represented as vec (A) = Kd;dvec (A). By property P7 this equation is
satis�ed if and only if A is a symmetric matrix.

Corollary 11 The fourth cumulant K4 of a d�dimensional random vector ad-
mits the representation �1
1 
 
1 + ::: + �r
r 
 
r, where r = rank (K4),
k
ik = 1, tr (
i
j) = 0, 
i = 
Ti 2 Rd�Rd, �i 2 R, for i 6= j and i; j = 1; :::; r.

The proof is very similar to the �rst one in this section and is therefore
omitted.
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7 Numerical example

According to the volatility feedback theory (French et al, 1987) an e¤ect of
news on stock prices (direct e¤ect) determines a negative e¤ect (feedback ef-
fect) on the prices themselves by making them more volatile. The multivariate
SGARCH model (De Luca et al, 2006) quanti�es the feedback e¤ects in sev-
eral stock markets. A major implication of the model is that third cumulants
of market price innovations in follower markets, conditionally on either bad or
good news from leader markets, are matrices of rank one. Third cumulants of
unconditional market innovations are matrices of rank one only when the ratio
of the feedback e¤ect to the direct e¤ect remains constant across markets (De
Luca and Loper�do, 2012).
We shall use the dataset in De Luca and Loper�do (2012), descriptive sta-

tistics and the results in Section 3 to assess the adequacy of the multivariate
SGARCH model. The data are the percentage logarithmic daily returns (simply
returns, henceforth) recorded from June 25, 2003 to June 23, 2008 in the French,
Spanish and Danish stock markets. The full dataset, named All, is partitioned
in two other datasets. The �rst (second) one, named Bad (Good), contains the
returns in the three markets, that is the followers markets, recorded a day after
that the US market, that is the leader market, showed a negative (positive) sign.
The measures of multivariate skewness described in Section 2 are very similar

to each other, within each dataset (Table 1).

Bad Good All
Mardia 1.743 0.687 0.256
Partial 1.697 0.662 0.258

Directional 1.718 0.607 0.239

Table 1: measures of multivariate skewness

By Theorem 4 in Section 3, this suggests that the corresponding third order
cumulants are very similar to rank-one matrices, consistently with the SGARCH
model with proportional feedback e¤ects.
The �rst singular values of the third order cumulants correponding to the

three data sets are much larger than the other ones (Table 2).

Bad Good All
First 7.284 3.136 2.130
Second 0.005 0.025 0.020
Third 0.005 0.004 0.005

Table 2: singular values of third sample cumulants

Equivalently, all third sample cumulants are very well approximated by matrices
of rank one. Again, this empirical �nding is consistent with the SGARCH model
with proportional feedback e¤ects.
The �rst right singular vectors associated to the third sample cumulants of
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the three data sets are very similar to each other (Table 3).

Bad Good All
First component 0.575 0.562 0.587
Second component 0.507 0.542 0.493
Third component 0.642 0.624 0.642

Table 3: First right singular vectors of the third sample cumulants

This fact and the previous ones imply that the third cumulants are nearly pro-
portional to each others, consistently with the SGARCH model with propor-
tional feedback e¤ects. Inferential and computational issues are beyond the
scope of this paper. However, we conjecture that sampling variability and nu-
merical errors account for the small di¤erences between model cumulants and
sample cumulants.
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