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Backward Stochastic Differential Equations
LWhat is a BSDE?

LSDEs - the differential dynamics approach to BSDEs

Consider the same situation backward in time:

T T
X, = g+/ b(s,Xs)ds+/ (s, X)dWs, Xr—¢ 0<t<T.
t t

| XT:§€L2(]:T)
m Is Xp deterministic?
m Is X; Fr-measurable?

m In general: NO! Everything is Fr-measurable. Problem is not
well-posed.
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LSDES - the differential dynamics approach to BSDEs

When is it possible to find an adapted backward solution that has
the dynamics of this SDE? How to find a setting such that the
problem is well-posed?

m Stochastic term has to be controlled by a process that
'subtracts the right amount of randomness’ of £&. No arbitrary
ol

m Z is part of the solution.
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LWhat is a BSDE?

LSDEs - the differential dynamics approach to BSDEs

Rename b=: f, X =: Y to write

T T
Xi :£+/ b(s,Xs,Zs)ds—/ ZsdWs, 0<t<T

t t

as
T T
Yy =& +/ f(s,Ys,Zs)ds / ZsdWs
t t

or, in differential notation,

dYt - *f(yt, Zt)dt + thWt

This is called a (standard) BSDE (backward stochastic differential
equation) with generator f and terminal condition &.

A solution to a BSDE is a pair of processes (Y, Z) such that the
equation is satisfied.
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LPricing of contingent claims

Let S be a risky asset with evolution dynamics
dSt = ,utStdt + O'tstth

A trader may invest in S or borrow/lend money (without risk) at
an interest rate ry.

m 7 is the amount of money invested in S at time t
m Y; is the wealth of the trader

m the money lend/borrowed is Y — 7

dyt = %dst + rt(Yt — 7Tt)dt = (7rt(,ut — rt) + rth)dt + ﬂ—to—tth
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LPricing of contingent claims

dYt = (ﬂ-f(:u‘t - rt) +rt Yt)dt + WtUtth

m Suppose we have at time T a payoff ¢ € L2 (European call
option)

m What is the minimal amount Yj such that at time T we can
cover & by a strategy m such that Y7 = &7

m Put differently, we look for a solution (Y, 7) that solves

T
Yy =& — / (ms(p )+ rsY)ds—/ msosdWs
t
If X exists, such that g4 —r = o), we get
T T
Yy =§&— / (ZsAs +r5Ys) ds — / ZsdWs,
t t

which is a BSDE.
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where Q is the risk-neutral measure.
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The above problem has an explicit solution:

EQ [em ) e

fti| )
where Q is the risk-neutral measure.

But: If the rates for borrowing and lending are different, the wealth
process satisfies

T T
Y, = f—/ <7rs,us + r’s(Ys — 7rs)+ — rbs(Ys — ws)_) ds—/ osmedWs
t t

corresponding BSDE:

T/ e ! /b
Y: =€ — / (ZS + —S(USYS — Zs)+ — i(USYS — Zs)> ds
t Os Os

Os
-
—/ ZsdWs
t
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LApplicaticms - Why do we need BSDEs?

LPricing of contingent claims

The above problem has an explicit solution:

EQ [em ) e

7|,

where Q is the risk-neutral measure.

But: If the rates for borrowing and lending are different, the wealth
process satisfies

T T
Vem e [ (mans oY= m) T = (Y= m) ) do [ ot
t t
corresponding BSDE:
T/ oy ol b
Yy =€ — / (ZS + 2(0sYs — Zs)T — = (0sYs — Zs)> ds
t Os Os

Os
-
—/ ZsdWs
t

No more explicit solutions in the above manner.
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LPricing of contingent claims

Similar approaches for:

m Hedging with constraints (Strategy between given bounds
[—m, M]) leads to

T T
Y = §+/ f(s, Ys, Zs)ds — / Z.dW, + At — A,
t t

for an adapted, nondecreasing process A.

m Same equation is used to hedge American options: Y; > (,

YT =(r.
'Reflected’ BSDEs, RBSDEs.

m Solution: (Y,Z,A)

11/31
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A nonlinear expectation is an operator £: L? — R such that

B X' > X = E(X') > E(X), equality only if X' = X.
m &(c) = c for constants

m for each X, t there is X such that for all A € Fy:
E(XT ) = E(XT4). In this case: nX =: E(X).

Theorem:
If
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(and f is uniformly Lipschitz in (y, z)) then £ defined by
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LRepresentation of risk measures

Risk measures <+ nonlinear F-expectations
A nonlinear expectation is an operator £: L? — R such that

B X' > X = E(X') > E(X), equality only if X' = X.
m &(c) = c for constants
m for each X, t there is X such that for all A € Fy:
E(XT ) = E(XT4). In this case: nX =: E(X).
Theorem:
If

T T
Y =&+ / (s, Ys, Zs)ds — / ZsdWs,
t t

(and f is uniformly Lipschitz in (y, z)) then £ defined by

EF(€) = Y; constitutes a nonlinear expectation f-expectation.

In the case f = 0 we get back the ordinary conditional expectation
E(X) = E[X|F:] (This will serve as an easy example later).

12/31
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LRepresentation of risk measures

Converse theorem (partly):
If £ is a nonlinear expectation such that

EX +X) < EX) + EM(X),
with f,(y, z) = p|z|, and if
E(X 4+ X') = E((X) + X for X' € [2(Fy),

then there exists a generator f, not depending on y such that
E=¢&".

13/31
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LFeynman»Kac representation of PDEs
There is a connection between semilinear parabolic equations and

BSDEs:
Let X be the forward solution to

dX: = b(t, X¢)dt + o(t, Xp)dWs,  Xo = x.

Moreover, let £ be the operator L = 0r¢p + b0y + %283)((;3.
Assume, there is a (nice) solution v to the PDE

0="LP+ (-, 0,00x0), ¢(T,x) = G(x).
Then, the couple Y := v(-, X), Z := d,v(-, X) solves the backward
equation
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LFeynman»Kac representation of PDEs

There is a connection between semilinear parabolic equations and
BSDEs:
Let X be the forward solution to

dX: = b(t, X¢)dt + o(t, Xp)dWs,  Xo = x.
Moreover, let £ be the operator L = 0r¢p + b0y + %283)((;3.

Assume, there is a (nice) solution v to the PDE

0=Lp+ (-, 0,00x0), &(T,x)=G(x).
Then, the couple Y := v(-, X), Z := d,v(-, X) solves the backward
equation

T T
Y, = G(X7) +/ f(s, Xs, Ys, Zs)ds —/ Z.dW,.
t t

'forward-backward SDE’ (decoupled)

Proof: It6 formula.

If the BSDE has at most one solution, then solving the BSDE and
the PDE are equivalent.

14 /31
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LFeynman—Kac representation of PDEs

Example:
m L= 0+ G O + pudx
m Lu(t,x)+ —|u(t,x) + o0xu(t,x)| =0
m u(T,x)=sin(x)
translates into
B dX; = pdt +odW;, Xp =1
m dY: = |Ye + Zt| + ZedW,
® Y7 =sin(X7)

15/31
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LFeynman»Kac representation of PDEs

The Feynman-Kac approach allows:
= Solving the BSDE gives rise (in general) to a viscosity
solution.

m Numerical schemes for BSDEs as an alternative to solve PDEs
by MC methods (especially in higher dimensions).

m Similar approaches exist for SPDEs. They lead to DSBSDEs
(doubly stochastic backward SDEs).
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L Stochastic control / Utility maximization

BSDEs emerged in the 1970s (Bismut) from this field.

Goal: Maximize an expected gain of the form

-
) =5 [g0xh) + [ RO we)awe).
0
with respect to v. Here, X¥ is the solution of

dX{ = be(Xe,ve)dt + o(Xe, ve)dWs
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L Stochastic control / Utility maximization

-
) =B [g0xp) + [ RO (o)
0
Sufficient/necessary conditions for optimality given by BSDEs:
Let us define the Hamiltonian

He(x, u, p, q) = be(x, u)p + oe(x, u)q + fi(x, v).
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Let us define the Hamiltonian
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L Stochastic control / Utility maximization

]
) =E [go@) + [ rox vt

Sufficient/necessary conditions for optimality given by BSDEs:

Let us define the Hamiltonian
Hi(x, u, p,q) = be(x, u)p + ot(x, u)g + fe(x, u).
Find argmaxu(/}-lt(xv u, p, q)) = ﬁt(xv p, q)

Solve an associated BSDE

T T
P, = d,g(X?) + / O H (X, Ps, Qs)ds — / Q.dW.
t t
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L Stochastic control / Utility maximization

50 =B 50+ [ axetam
Sufficient/necessary conditions for optimality given by BSDEs:
Let us define the Hamiltonian

He(x, u, p,q) = be(x, u)p + oe(x, u)q + fr(x, u).
Find argmax,(H:(x, u, p, q)) = D+(x, p, q).

Solve an associated BSDE
. T . T
P: = 0xg(X{) +/ OxHe(XZ, Ps, Qs)ds — / QsdWs.
t t

get optimal control ¥ by argmax,(H:(X¢, u, Ps, Qs))
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Utility maximization:
Given:
m Stock: S5y = Sp + fot wrdy + fot ordW,
m Wealth up to now: X[ = x + fot 7sdSs, x> 0.
m Utility function: U: R — R.
m Liability: F € 2

19/31



Backward Stochastic Differential Equations
LApplications - Why do we need BSDEs?

L Stochastic control / Utility maximization

Utility maximization:
Given:

m Stock: S5y = Sp + fot wrdy + fot ordW,

m Wealth up to now: X[ = x + fot 7sdSs, x> 0.
m Utility function: U: R — R.

m Liability: F € 2

Maximize the expected utility

-
supE [U <x+/ TsdSs — F>]
0
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Utility functions for example:
m logarithmic: U(x) = log(x)
m power: U(x) = X—pp, p€]0,1[.
m exponential: U(x) = —exp(—7x),~y > 0.
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L Stochastic control / Utility maximization

Utility functions for example:
m logarithmic: U(x) = log(x)
m power: U(x) = X—pp, p<]0,1].
m exponential: U(x) = —exp(—7x),~y > 0.
Analytical approach:
m Hamilton-Jacobi-Bellman: Restricted to Markov setting
m Convex duality: mostly non constructive
BSDE approach:

m some numerics available (Lipschitz, quadratic generators)
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LApplications - Why do we need BSDEs?

L Stochastic control / Utility maximization

There are...
® ...many more applications (principal-agent problem,...)

m 'Meta-theorem’: Any problem in mathematical finance can be
reduced (in some sense) to a (certain type of) BSDE.
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Backward Stochastic Differential Equations

L Mathematical treatment

LAn easy example

Suppose that £ = E€ + fOT ZsdW; (predictable representation
property.)

Then, with Y, = E¢ + [ ZsdWs, we have

]
Y= ¢ —/ Z.dw,,
t
which is a BSDE with f = 0.

Note also that Y; = E [¢|F¢].
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therating schemes

Theoretical (typical) method to prove existence and uniqueness
(usually Lipschitz generators):

m Start with (Y?,Z29) = (0,0)
m Get Y"1 by
T T
Yt"+1 = §+/ f(s, Y2, Z])ds — / ZS"'HdWs
t t

equivalent to

i
yrtl _ | {g + / f(s, Y2, Z")ds
t

]:t:|a

Z"+1 by Martingale representation of & + foT f(s, Yl Z)ds.
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therating schemes

Theoretical (typical) method to prove existence and uniqueness
(usually Lipschitz generators):

m Start with (Y?,Z29) = (0,0)
m Get Y"1 by

T T
Yt”+1 = §+/ f(s, Y2, Z])ds — / ZS”"HdWs
t

t

equivalent to

i
yrtl _ | {g + / f(s, Y2, Z")ds
t

]:t:|a

Z"+1 by Martingale representation of & + foT f(s, Yl Z)ds.

m Show convergence of (Y, Z"),>0 by Banach’s fixed-point
theorem

23/31
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To obtain a numerical scheme for

T T
Yi =&+ / (s, Ys, Zs)ds — / ZsdWs,
t t

we rewrite the equation for one step in a time-net:

t; ti
Yy, = Yo+ / F(s, Ys, Zs)ds — / Z.dW,,
t, t,

i—1 i—1
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Backward Stochastic Differential Equations

L Mathematical treatment

L Numerics

To obtain a numerical scheme for

T T

Y: = §+/ f(s, Ys, Zs)ds —/ ZsdWs,
t t
we rewrite the equation for one step in a time-net:
t; ti
Yi = Yt +/ (s, Ys, Zs)ds —/ ZsdWs,

ti_1 ti—1

Then, discretize the equation:
\A/ti_]- = ?ti + (Ati)f(th Vtﬁ 2&) - (AWti)zti_]-’ VT =&,

and find \A/t,._l by taking the conditional expectation

\A/t,'—]. =E \A/t,' + (Atl)f(tlv Y/t,'v 2t,')

ft,,l}
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L Mathematical treatment

L Numerics

How to find the Z process:
Multiply

Vi1 = Yo + (A (t1, Ve, 2e) — (AWL) 21, YT =€,
by AW, to get

(AWti)s\/ti—l = (AWti)th'i'(A th.)(At,')f(t;, \A/ti’ 2ti)_(AWti)22tf_1’
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Backward Stochastic Differential Equations

L Mathematical treatment

L Numerics

How to find the Z process:
Multiply
Vi1 = Yy + (A6)F(t, Ve Zs) — (AW) Zy—1, Y7 =€,
by AW, to get
(AW,) Vo1 = (AW,,) Yot (AW, ) (AL F(ti, Ve, Ze))— (AW, )2 24,1

Taking the conditional expectation brings us to

A A A 1
fo71 =K [(AWti)Yti + (AWti)(Atf)f(tiv Ytiv Zti) fti*1:| At

i
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Backward Stochastic Differential Equations

L Mathematical treatment

L Numerics

m The schemes have order ﬁ, N = max; At;

m Theoretical rate of convergence since calculations of
conditional expectations are involved!

m Other type of numerical schemes: Involve Picard iterations of
the equations and chaos decompositions of random variables.

m Applicable codes/schemes do exist!

26 /31
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m BSDEs with jumps (or Lévy driven BSDEs, BSDEJ, BSDEL):
T
Y: =€ +/ (s, Ys, Zs, Us)ds
t

t
- / ZodW, Us(x)Ri(ds, dx)
t 1t, T1xRg

e.g. if Brownian motion in models is replaced by a Lévy
process.
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LMy field within BSDE theory

Basically | follow three main topics (with Ch. Geiss, University of
Jyvaskyla):

m BSDEs with jumps (or Lévy driven BSDEs, BSDEJ, BSDEL):
T
Y =¢ +/ (s, Ys, Zs, Us)ds
t

t
- / ZodW, Us(x)Ri(ds, dx)
t 1t, T1xRg

e.g. if Brownian motion in models is replaced by a Lévy
process.
Shock phenomena, PDEs (Brown) become PDIEs (Lévy),...

Existence and uniqueness for non-Lipschitz generators
(one-sided Lipschitz, locally Lipschitz, quadratic growth and
beyond)

27/31
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m Application of Malliavin calculus to BSDEs.

Malliavin derivative of a RV £ = 'stochastic derivative with
respect to Brownian motion’. Denoted as Ds£,0 < s < T.
Example:

DsWE = 2W, - g 4(s)

If a BSDE is Malliavin differentiable, the differentiated
solutions is again a BSDE.

The identity D;Y; = Z; allows explicit access to the Z-process
(trading strategy,...).

m Numerical improvements for BSDEs (with G. Leobacher, KFU
Graz)
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Bruno Bouchard: Lecture Notes on BSDEs, Existence and
Main Results, Lecture given at the London School of
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m Nonlinear expectations:
S. Peng: Backward Stochastic differential equations, nonlinear
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International congress of Mathematicians, 1, 2011.
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S. Peng: Backward stochastic differential equations and
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m Numerics:
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