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Introducing optimal value functionals

Throughout the talk we work under the following specifications:
e X is a topological vector space with partial order >

o Ais a closed subset of X such that 0 € A and

XeA Y>X = YeAd

Vo : RY — R is a linear functional

e Vi : RN — X is a linear operator

We focus on functionals p : X — [—00, 00| defined by

p(X) = inf{Vo(\); A€ RN, X + V4(\) € A}
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Motivating examples

The setup. We consider a one-period economy where:

e future uncertainty is modeled by a probability space

(Q,F,P)

e the market consists of N frictionless and liquid assets
S'=(%51)

e the value of a portfolio A € RV at time t is
N . .
Vi(A) =D XS]
=il

We denote by X a set of random variables of interest.
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Motivating example (1)

Capital Adequacy. Assume that X represents the capital position of a
financial institution at time 1. Then

p(X) =inf{Vo(\); A€ R, X + V4()\) € A}
where

A {X € X; VaR,(X) <0} (Value at Risk)
| {X € X; ES4(X) <0} (Expected Shortfall)

can be interpreted as a capital requirement for X.

Reference: Artzner, Delbaen, Eber, Heath (1999), Féllmer, Schied (2002),
Frittelli, Scandolo (2006), Artzner, Delbaen, Koch-Medina (2009), Farkas,
Koch-Medina, Munari (2014), Liebrich, Svindland (2107), ...
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Motivating example (2)

Pricing/Hedging. Assume X represents a payoff at time 1. Then
p(=X) =inf{Vo(\); Xe RN Vi(\) — X € A}
where
{XeX; P(X>0)=1} (superhedging)
A={XeX; E[u(X)] > k} (utility u)
{X eX; a(X) > k} (acceptability index «)

can be interpreted as a price for X (from a seller’s perspective).

Reference: Cochrane, Saa-Requejo (2000), Bernardo, Ledoit (2000), Carr,
Geman, Madan (2001), Cherny, Madan (2009,2010), Arai (2011), Arai,
Fukasawa (2014), ...
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Motivating example (3)

Portfolio Management. Assume X represents a position at time 1.
Then
p(X) = inf{r(X + Vi(\) — Vo(\)); A € RM}

where
(X) = VaR,(X) (Value at Risk)
| ESa(X) (Expected Shortfall)

can be interpreted as a market-based risk measure for X.

Reference: Follmer, Schied (2002), Barrieu, El Karoui(2009), ...
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Motivating example (4)

Capital Allocation/Systemic Risk. Assume that X = (Xi,..., Xy)
represents the capital positions of d financial entities at time 1. Then

d
) = inf { 32 VaN)i Moo A € B,
=1

(Xl aF Vl()\l), A ,Xd aF Vl()\d)) S .A}
where
_ {X exd,; Xie A, Vj=1,...,d}
{X € X?; E[u(X)] > k} (multivariate utility u)

can be interpreted as a systemic risk measure for X.

Reference: Burgert, Riischendorf (2006), Ekeland, Schachermayer (2011),
Armenti, Crépey, Drapeau, Papapantoleon (2017), Biagini, Fouque, Frittelli,
Meyer-Brandis (2017), Feinstein, Rudloff, Weber (2017), ...
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Objective of the presentation

Focus. We focus on the set-valued mapping P : X = RV defined by

P(X)={NeR"; X+ Vi(A\) € A, Vo(N) = p(X)}

Every element of P(X) is called an optimal portfolio (of eligible assets).

Goal. We address the following questions:
e existence of optimal portfolios?
e uniqueness of optimal portfolios?

e stability of optimal portfolios?

This requires studying the existence, uniqueness, and stability of the
solutions of a nonlinear parametric optimization problem (featuring
infinite-dimensional parameters).
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Existence of optimal portfolios

Theorem. Define Ry = {V4(\); A € RV, V()\) = 0}. Then, the
following are equivalent:

(a) P(X) # 0 for every X € X.
(b) A+ Ry is closed.

Corollary. Assume that one of the following conditions holds:
(1) A is star-shaped (eg convex or conic) and AN Ry = {0}.
(2) Ais polyhedral (ie a finite intersection of halfspaces).

(3) A NRo = {0} (A= is the largest cone in A).

Then, P(X) # () for every X € X.

The conditions in red stipulate the absence of (scalable) good deals.
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Uniqueness of optimal portfolios

Proposition. Assume that for every distinct X, Y € 0.A we have
X—-YeRy = MX+(1-N)Y eint(A) for some X € (0,1).

Then, |P(X)| <1 for every X € X.

Corollary. Assume that A is strictly convex. Then, |P(X)| <1 for every
XeX.

v
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Stability of optimal portfolios

Intuitively speaking, we want to ensure that

Y is close to X = P(Y)is “close” to P(X).

Definition. (1) We say that P is upper semicontinuous at X if
U C RN open : P(X) CU == 3 neighborhood Ux : P(Ux) C U.
(2) We say that P is lower semicontinuous at X if

3 neighborhood VY
UCRN open : P(X)NUAD = { neighborhood Ux : VY € Ux

PY)N U # 0.

The above properties ensure that P does not shift away and, more
specifically, does not explode (1) or shrink (2) as a result of a slight
perturbation of X.
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Upper semicontinuity

Theorem. The following statements are equivalent:
(a) P is upper semicontinuous on X.

(b) P(K) is bounded for every compact K C X.
(c) For every X € X we have

Xo = X, Ay € P(Xy) = INEP(X) : An, — .

Corollary. Assume that one of the following conditions holds:
(1) A is star-shaped and P(X) is bounded for all X € X’.
(2) A~ NRe = {0}.

Then, P is upper semicontinuous on X.
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Lower semicontinuity

Theorem. The following statements are equivalent:
(a) P is lower semicontinuous on X'.

(b) For every X € X we have

X, = X, AEP(X) = I, €P(Xn) : Ao — A

In other words, lower semicontinuity ensures that

Y is close to X and A € P(X) = 3u € P(Y) that is close to A.

Theorem. If A is polyhedral, then P is lower semicontinuous on X.

Corollary. We have lower semicontinuity if A is the positive cone or is
based on Expected Shortfall provided that we work in finite dimension.
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Failure of lower semicontinuity

Example. The map P fails to be lower semicontinuous on X in each of
the following cases:

(1) Ais based on Value at Risk (both in finite and infinite dimension).

(2) Ais a law-invariant convex cone in infinite dimension (with the
exception of the acceptance set induced by the mean), eg:

A is the positive cone

A is based on Expected Shortfall

A is based on a spectral risk measure

A is based on a law-invariant acceptability index
A is based on an expectile

(3) A is convex, law-invariant, and is contained in some acceptance set
based on Value at Risk in infinite dimension.
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Robust portfolio selections

Definition. A continuous map P : X — RN such that
P(X) € P(X) forevery X € X

is said to be a continuous portfolio selection.

Michael’s Selection Theorem. If P is lower semicontinuous on X, then
there exists a continuous portfolio selection.

In general, lower semicontinuity is only sufficient for the existence of
continuous selections.

Goal. We address the following additional question:

e existence of continuous portfolio selections?
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Failure of robust portfolio selections
Example. The optimal portfolio map P always fails to admit robust
portfolio selections if
(1) Ais based on Value at Risk (both in finite and infinite dimension).
In addition, P may fail to admit robust portfolio selections if

(2) Ais convex (both in finite and infinite dimension).
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Stability of nearly-optimal portfolios
Focus. We focus on the set-valued mapping P. : X = RN defined by

P.(X)={AeRV; X+ WVi(A\) € A, Vo(A) <p(X)+e}, >0

Every element of P.(X) is called a nearly-optimal portfolio.

Theorem. Assume the following conditions are both satisfied:

(1) For every X € X there exists A € RV such that X + V;()\) € int(A).

(2) cl(int(.A)) = A (eg A is convex).

Then, P. is lower semicontinuous on X .

Corollary. Assume that one of the following conditions holds:
(1) There exists A € RN such that V;()\) € int(X).
(2) Ais convex and there exists A € RV such that V4(\) € int(A>).

Then, P, is lower semicontinuous on X .
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Conclusions
We discussed existence, uniqueness, and stability of optimal
portfolios in a general one-period economy.
Stability is understood in the sense of parametric optimization.

We showed that stability breaks down in many important
infinite-dimensional settings, eg:

» superreplication

» conic finance

» pricing with acceptable risk, eg based on VaR and ES
» (systemic) risk measurement, eg based on VaR and ES

Stability can be partially restored for nearly-optimal portfolios.
From qualitative to quantitative stability.

From a one-period to a multi-period setting.

Thank you very much for your attention!
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