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Introducing optimal value functionals

Throughout the talk we work under the following speci�cations:

• X is a topological vector space with partial order ≥

• A is a closed subset of X such that 0 ∈ A and

X ∈ A, Y ≥ X =⇒ Y ∈ A

• V0 : RN → R is a linear functional

• V1 : RN → X is a linear operator

We focus on functionals ρ : X → [−∞,∞] de�ned by

ρ(X ) = inf{V0(λ) ; λ ∈ RN , X + V1(λ) ∈ A}
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Motivating examples

The setup. We consider a one-period economy where:

• future uncertainty is modeled by a probability space

(Ω,F ,P)

• the market consists of N frictionless and liquid assets

S i = (S i
0
,S i

1
)

• the value of a portfolio λ ∈ RN at time t is

Vt(λ) =
N∑
i=1

λiS i
t .

We denote by X a set of random variables of interest.
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Motivating example (1)

Capital Adequacy. Assume that X represents the capital position of a
�nancial institution at time 1. Then

ρ(X ) = inf{V0(λ) ; λ ∈ RN , X + V1(λ) ∈ A}

where

A =

{
{X ∈ X ; VaRα(X ) ≤ 0} (Value at Risk)

{X ∈ X ; ESα(X ) ≤ 0} (Expected Shortfall)

can be interpreted as a capital requirement for X .

Reference: Artzner, Delbaen, Eber, Heath (1999), Föllmer, Schied (2002),
Frittelli, Scandolo (2006), Artzner, Delbaen, Koch-Medina (2009), Farkas,
Koch-Medina, Munari (2014), Liebrich, Svindland (2107), ...
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Motivating example (2)

Pricing/Hedging. Assume X represents a payo� at time 1. Then

ρ(−X ) = inf{V0(λ) ; λ ∈ RN , V1(λ)− X ∈ A}

where

A =


{X ∈ X ; P(X ≥ 0) = 1} (superhedging)

{X ∈ X ; E[u(X )] ≥ k} (utility u)

{X ∈ X ; α(X ) ≥ k} (acceptability index α)

can be interpreted as a price for X (from a seller's perspective).

Reference: Cochrane, Saa-Requejo (2000), Bernardo, Ledoit (2000), Carr,
Geman, Madan (2001), Cherny, Madan (2009,2010), Arai (2011), Arai,
Fukasawa (2014), ...
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Motivating example (3)

Portfolio Management. Assume X represents a position at time 1.
Then

ρ(X ) = inf{r(X + V1(λ)− V0(λ)) ; λ ∈ RN}

where

r(X ) =

{
VaRα(X ) (Value at Risk)

ESα(X ) (Expected Shortfall)

can be interpreted as a market-based risk measure for X .

Reference: Föllmer, Schied (2002), Barrieu, El Karoui (2009), ...
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Motivating example (4)

Capital Allocation/Systemic Risk. Assume that X = (X1, . . . ,Xd)
represents the capital positions of d �nancial entities at time 1. Then

ρ(X ) = inf

{ d∑
j=1

V0(λj) ; λ1, . . . , λd ∈ RN ,

(X1 + V1(λ1), . . . ,Xd + V1(λd)) ∈ A
}

where

A =

{
{X ∈ X d ; Xj ∈ Aj , ∀j = 1, . . . , d}
{X ∈ X d ; E[u(X )] ≥ k} (multivariate utility u)

can be interpreted as a systemic risk measure for X .

Reference: Burgert, Rüschendorf (2006), Ekeland, Schachermayer (2011),
Armenti, Crépey, Drapeau, Papapantoleon (2017), Biagini, Fouque, Frittelli,
Meyer-Brandis (2017), Feinstein, Rudlo�, Weber (2017), ...
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Objective of the presentation

Focus. We focus on the set-valued mapping P : X ⇒ RN de�ned by

P(X ) = {λ ∈ RN ; X + V1(λ) ∈ A, V0(λ) = ρ(X )}

Every element of P(X ) is called an optimal portfolio (of eligible assets).

Goal. We address the following questions:

• existence of optimal portfolios?

• uniqueness of optimal portfolios?

• stability of optimal portfolios?

This requires studying the existence, uniqueness, and stability of the
solutions of a nonlinear parametric optimization problem (featuring
in�nite-dimensional parameters).
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Existence of optimal portfolios

Theorem. De�ne R0 = {V1(λ) ; λ ∈ RN , V0(λ) = 0}. Then, the
following are equivalent:

(a) P(X ) 6= ∅ for every X ∈ X .

(b) A+R0 is closed.

Corollary. Assume that one of the following conditions holds:

(1) A is star-shaped (eg convex or conic) and A ∩R0 = {0}.

(2) A is polyhedral (ie a �nite intersection of halfspaces).

(3) A∞ ∩R0 = {0} (A∞ is the largest cone in A).

Then, P(X ) 6= ∅ for every X ∈ X .

The conditions in red stipulate the absence of (scalable) good deals.
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Uniqueness of optimal portfolios

Proposition. Assume that for every distinct X ,Y ∈ ∂A we have

X − Y ∈ R0 =⇒ λX + (1− λ)Y ∈ int(A) for some λ ∈ (0, 1).

Then, |P(X )| ≤ 1 for every X ∈ X .

Corollary. Assume that A is strictly convex. Then, |P(X )| ≤ 1 for every
X ∈ X .
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Stability of optimal portfolios

Intuitively speaking, we want to ensure that

Y is close to X =⇒ P(Y ) is �close� to P(X ).

De�nition. (1) We say that P is upper semicontinuous at X if

U ⊂ RN open : P(X ) ⊂ U =⇒ ∃ neighborhood UX : P(UX ) ⊂ U .

(2) We say that P is lower semicontinuous at X if

U ⊂ RN open : P(X ) ∩ U 6= ∅ =⇒

{
∃ neighborhood UX : ∀Y ∈ UX

P(Y ) ∩ U 6= ∅.

The above properties ensure that P does not shift away and, more
speci�cally, does not explode (1) or shrink (2) as a result of a slight
perturbation of X .
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Upper semicontinuity

Theorem. The following statements are equivalent:

(a) P is upper semicontinuous on X .

(b) P(K) is bounded for every compact K ⊂ X .

(c) For every X ∈ X we have

Xn → X , λn ∈ P(Xn) =⇒ ∃λ ∈ P(X ) : λnk → λ.

Corollary. Assume that one of the following conditions holds:

(1) A is star-shaped and P(X ) is bounded for all X ∈ X .

(2) A∞ ∩R0 = {0}.

Then, P is upper semicontinuous on X .
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Lower semicontinuity

Theorem. The following statements are equivalent:

(a) P is lower semicontinuous on X .

(b) For every X ∈ X we have

Xn → X , λ ∈ P(X ) =⇒ ∃λn ∈ P(Xn) : λn → λ.

In other words, lower semicontinuity ensures that

Y is close to X and λ ∈ P(X ) =⇒ ∃µ ∈ P(Y ) that is close to λ.

Theorem. If A is polyhedral, then P is lower semicontinuous on X .

Corollary. We have lower semicontinuity if A is the positive cone or is
based on Expected Shortfall provided that we work in �nite dimension.
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Failure of lower semicontinuity

Example. The map P fails to be lower semicontinuous on X in each of
the following cases:

(1) A is based on Value at Risk (both in �nite and in�nite dimension).

(2) A is a law-invariant convex cone in in�nite dimension (with the
exception of the acceptance set induced by the mean), eg:

• A is the positive cone
• A is based on Expected Shortfall
• A is based on a spectral risk measure
• A is based on a law-invariant acceptability index
• A is based on an expectile

(3) A is convex, law-invariant, and is contained in some acceptance set
based on Value at Risk in in�nite dimension.
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Robust portfolio selections

De�nition. A continuous map P : X → RN such that

P(X ) ∈ P(X ) for every X ∈ X

is said to be a continuous portfolio selection.

Michael's Selection Theorem. If P is lower semicontinuous on X , then
there exists a continuous portfolio selection.

In general, lower semicontinuity is only su�cient for the existence of
continuous selections.

Goal. We address the following additional question:

• existence of continuous portfolio selections?
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Failure of robust portfolio selections

Example. The optimal portfolio map P always fails to admit robust
portfolio selections if

(1) A is based on Value at Risk (both in �nite and in�nite dimension).

In addition, P may fail to admit robust portfolio selections if

(2) A is convex (both in �nite and in�nite dimension).

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

16 / 18



Stability of nearly-optimal portfolios

Focus. We focus on the set-valued mapping Pε : X ⇒ RN de�ned by

Pε(X ) = {λ ∈ RN ; X + V1(λ) ∈ A, V0(λ) < ρ(X ) + ε}, ε > 0

Every element of Pε(X ) is called a nearly-optimal portfolio.

Theorem. Assume the following conditions are both satis�ed:

(1) For every X ∈ X there exists λ ∈ RN such that X +V1(λ) ∈ int(A).

(2) cl(int(A)) = A (eg A is convex).

Then, Pε is lower semicontinuous on X .

Corollary. Assume that one of the following conditions holds:

(1) There exists λ ∈ RN such that V1(λ) ∈ int(X+).

(2) A is convex and there exists λ ∈ RN such that V1(λ) ∈ int(A∞).

Then, Pε is lower semicontinuous on X .
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Conclusions

• We discussed existence, uniqueness, and stability of optimal
portfolios in a general one-period economy.

• Stability is understood in the sense of parametric optimization.

• We showed that stability breaks down in many important
in�nite-dimensional settings, eg:

� superreplication
� conic �nance
� pricing with acceptable risk, eg based on VaR and ES
� (systemic) risk measurement, eg based on VaR and ES

• Stability can be partially restored for nearly-optimal portfolios.

• From qualitative to quantitative stability.

• From a one-period to a multi-period setting.

Thank you very much for your attention!
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