Risk-Averse Control of Partially Observable Markov Systems

Andrzej Ruszczyński

Workshop on Dynamic Multivariate Programming Vienna, March 2018

Partially Observable Discrete-Time Models

- Markov Process: $\{X_t, Y_t\}_{t=1,...,T}$ on the Borel state space $\mathcal{X} \times \mathcal{Y}$
- The process $\{X_t\}$ is observable, while $\{Y_t\}$ is not observable
- Control sets: $U_t: \mathcal{X} \Rightarrow \mathcal{U}, t = 1, ..., T$
- Transition kernel: $\mathbb{P}[(X_{t+1}, Y_{t+1}) \in C \mid x_t, y_t, u_t] = Q_t(x_t, y_t, u_t)(C)$
- Costs: $Z_t = c_t(X_t, Y_t, U_t), t = 1, ..., T$

Two relevant filtrations

- $\{\mathcal{F}_t^{X,Y}\}$ defined by the full state process $\{X_t, Y_t\}$
- $\{\mathcal{F}_t^X\}$ defined by the observed process $\{X_t\}$

Space of costs: $Z_t = \{ Z : \Omega \to \mathbb{R} \mid Z \text{ is } \mathcal{F}_t^{X,Y} \text{-measurable and bounded} \}$

Classical Problem:

min
$$\mathbb{E}\left\{c_1(X_1, Y_1, U_1) + c_2(X_2, Y_2, U_2) + \dots + c_T(X_T, Y_T, U_T)\right\}$$

Partially Observable Discrete-Time Models

- Markov Process: $\{X_t, Y_t\}_{t=1,...,T}$ on the Borel state space $\mathcal{X} \times \mathcal{Y}$
- The process $\{X_t\}$ is observable, while $\{Y_t\}$ is not observable
- Control sets: $U_t: \mathcal{X} \Rightarrow \mathcal{U}, t = 1, ..., T$
- Transition kernel: $\mathbb{P}[(X_{t+1}, Y_{t+1}) \in C \mid x_t, y_t, u_t] = Q_t(x_t, y_t, u_t)(C)$
- Costs: $Z_t = c_t(X_t, Y_t, U_t), t = 1, ..., T$

Two relevant filtrations

- ullet $\left\{\mathcal{F}_{t}^{X,Y}\right\}$ defined by the full state process $\left\{X_{t},\,Y_{t}\right\}$
- $\{\mathcal{F}_t^X\}$ defined by the observed process $\{X_t\}$

Space of costs: $Z_t = \{ Z : \Omega \to \mathbb{R} \mid Z \text{ is } \mathcal{F}_t^{X,Y} \text{-measurable and bounded} \}$

Risk-Averse Problem:

$$\min \ \rho_{1,T} \big\{ c_1(X_1, Y_1, U_1), c_2(X_2, Y_2, U_2), \dots, c_T(X_T, Y_T, U_T) \big\}$$

Dynamic Risk Measures

Probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs) Z_1, Z_2, \ldots, Z_T Spaces: \mathcal{Z}_t of \mathcal{F}_t -measurable functions and $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$

Dynamic Risk Measure

A sequence of conditional risk measures $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{Z}_t$, t = 1, ..., T. Monotonicity condition:

$$\rho_{t,T}(Z) \leq \rho_{t,T}(W)$$
 for all $Z, W \in \mathcal{Z}_{t,T}$ such that $Z \leq W$

Local property: For all $A \in \mathcal{F}_t$

$$\rho_{t,T}(\mathbb{I}_A Z) = \mathbb{I}_A \rho_{t,T}(Z)$$

Time Consistency and Nested Representation

A dynamic risk measure $\{\rho_{t,T}\}_{t=1}^{T}$ is time-consistent if for all $1 \le t < T$

$$Z_t = W_t$$
 and $\rho_{t+1,T}(Z_{t+1},...,Z_T) \le \rho_{t+1,T}(W_{t+1},...,W_T)$

imply that
$$\rho_{\tau,T}(Z_{\tau},\ldots,Z_{T}) \leq \rho_{\tau,T}(W_{\tau},\ldots,W_{T})$$

Define one-step mappings: $\rho_t(Z_{t+1}) = \rho_{t,T}(0, Z_{t+1}, 0, \dots, 0)$

Nested Decomposition Theorem

Suppose a dynamic risk measure $\{\rho_{t,T}\}_{t=1}^{T}$ is time-consistent, and

$$\rho_{t,T}(0,\ldots,0) = 0$$

$$\rho_{t,T}(Z_t, Z_{t+1},\ldots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1},\ldots, Z_T)$$

Then for all t we have the representation

$$\rho_{t,T}(Z_t,...,Z_T) = Z_t + \rho_t \bigg(Z_{t+1} + \rho_{t+1} \Big(Z_{t+2} + \cdots + \rho_{T-1}(Z_T) \Big) \cdots \bigg) \bigg)$$

Issues with General Theory in the Markov Setting

- ullet Probability measure $P^{ec{\Pi}}$, processes $X^{ec{\Pi}}_t$ and $Z^{ec{\Pi}}_t$ depend on policy $ec{\Pi}$
- We have to deal with a family of risk measures $\rho_{t,T}^{II}(\cdot)$
- The values of the risk measures may depend on history, and Markov policies cannot be expected
- The cost may not be observable

Motivating Example

 $\mathcal{X} = \{0, 1\}, \ T = 2$, and $Z_t = Z_t(x_t)$ (cost depends on state).

Consider the risk measure

$$\begin{split} \rho_{2,2}(Z_2)(x_1,x_2) &= Z_2(x_2) \\ \rho_{1,2}(Z_1,Z_2)(x_1) &= Z_1(x_1) + Z_2(x_1) \end{split} \quad \text{(assumes that x_1 will not change)} \end{split}$$

It is time-consistent and has the normalization, translation, and local properties.

As $\rho_{1,2}$ does not depend on the distribution of x_2 , given x_1 , it is useless for controlling Markov models. In fact, it is much worse than expectation.

Conditional Risk Evaluators

Space of observable random variables:

$$\mathcal{S}_t = \left\{ S : \Omega o \mathbb{R} \ \middle| \ S \ \text{is} \ \mathcal{F}_t^X \text{-measurable and bounded} \right\}, \quad t = 1, \dots, T$$

A mapping $\rho_{t,T}: \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T \to \mathcal{S}_t$ is a conditional risk evaluator

(i) It is monotonic if $Z_s \leq W_s$ for all s = t, ..., T, implies that

$$\rho_{t,T}(Z_t,\ldots,Z_T) \leq \rho_{t,T}(W_t,\ldots,W_T)$$

- (ii) It is normalized if $\rho_{t,T}(0,\ldots,0)=0$;
- (iii) It is translation equivariant if $\forall (Z_t, \dots, Z_T) \in S_t \times Z_{t+1} \times \dots \times Z_T$, $\rho_{t,T}(Z_t,\ldots,Z_T) = Z_t + \rho_{t,T}(0,Z_{t+1},\ldots,Z_T);$
- (iv) It is decomposable if a mapping $\rho_t: \mathcal{Z}_t \to \mathcal{S}_t$ exists such that:

$$\rho_t(Z_t) = Z_t, \quad \forall Z_t \in \mathcal{S}_t,$$

$$\rho_{t,T}(Z_t, \dots, Z_T) = \rho_t(Z_t) + \rho_{t,T}(0, Z_{t+1}, \dots, Z_T), \quad \forall Z \in \mathcal{Z}_{t,T}$$

Risk Filters and their Time Consistency

A risk filter $\{\rho_{t,T}\}_{t=1}$ is a sequence of conditional risk evaluators $\rho_{t,T}: \mathcal{Z}_{t,T} \to \mathcal{S}_{t}$

We have index risk filters by policy π , because π affects the measure P^{π} History: $H_t^{\pi} = (X_1, X_2^{\pi}, \dots, X_t^{\pi}), h_t = (x_1, x_2, \dots, x_t)$

A family of risk filters $\{\rho_{t,T}^{\pi}\}_{t=1,\ldots,T}^{\pi\in H}$ is stochastically conditionally time consistent if for any $\pi, \pi' \in \Pi$, for any $1 \le t < T$, for all $h_t \in \mathcal{X}^t$, all $(Z_t,\ldots,Z_T)\in\mathcal{Z}_{t,T}$ and all $(W_t,\ldots,W_T)\in\mathcal{Z}_{t,T}$, the conditions

$$Z_t = W_t$$

$$\left(\rho_{t+1,T}^{\pi}(Z_{t+1},\ldots,Z_{T})\mid H_{t}^{\pi}=h_{t}\right) \leq_{\mathrm{st}} \left(\rho_{t+1,T}^{\pi'}(W_{t+1},\ldots,W_{T})\mid H_{t}^{\pi'}=h_{t}\right)$$

imply

$$\rho_{t,T}^{\pi}(Z_t, Z_{t+1}, \dots, Z_T)(h_t) \leq \rho_{t,T}^{\pi'}(W_t, W_{t+1}, \dots, W_T)(h_t)$$

The relation \leq_{st} is the conditional stochastic order

Bayes Operator

Belief State: Conditional distribution of Y_t given initial distribution ξ_1 and history $g_t = (\xi_1, x_1, u_1, x_2, \dots, u_{t-1}, x_t)$

$$[\Xi_t(g_t)](A) = \mathbb{P}[Y_t \in A \mid g_t], \quad \forall A \in \mathcal{B}(\mathcal{Y}), \quad t = 1, \dots, T$$

Conditional distribution of the observable part:

$$\mathbb{P}\left[X_{t+1} \in B \mid g_t, u_t\right] = \int_{\mathcal{Y}} \left[Q_t^X(x_t, \cdot, u_t)\right](B) \; d\mathcal{Z}_t(g_t),$$

where $Q_t^X(x_t, y_t, u_t)$ is the marginal of $Q_t(x_t, y_t, u_t)$ on the space \mathcal{X}

Transition of the belief state - Bayes operator

$$\mathcal{Z}_{t+1}(g_{t+1}) = \Phi_t(x_t, \mathcal{Z}_t(g_t), u_t, x_{t+1})$$

Example: $\mathcal{Y} = \{y^1, \dots, y^n\}$ and $Q_t(x, y, u)$ has density $q_t(x', y'|x, y, u)$

$$\left[\Phi_t(x,\xi,u,x')\right](\{y^k\}) = \frac{\sum_{i=1}^n q_t(x',y^k \mid x,y^i,u)\,\xi^i}{\sum_{\ell=1}^n \sum_{i=1}^n q_t(x',y^\ell \mid x,y^i,u)\,\xi^i}$$

Markov Risk Filters

Extended state history (including belief states):

$$h_t = (x_1, \xi_1, x_2, \xi_2, \dots, x_t, \xi_t) \in \mathbb{H}_t$$

Policies $\pi = (\pi_1, \dots, \pi_T)$ with decision rules $\pi_t(h_t) \in U_t(x_t)$

Markov Policy

For all
$$h_t, h_t' \in \mathbb{H}_t$$
, if $x_t = x_t'$ and $\xi_t = \xi_t'$, then $\pi_t(h_t) = \pi_t(h_t') = \pi_t(x_t, \xi_t)$

Policy value function:

$$v_t^{\pi}(h_t) = \rho_{t,T}^{\pi} (c_t(X_t, Y_t, \pi_t(H_t)), \dots, c_T(X_T, Y_T, \pi_T(H_T)))(h_t)$$

A family of risk filters $\{\rho_{t,T}^{\pi}\}_{t=1,\dots,T}^{\pi\in H}$ is Markov if for all Markov policies $\pi \in \Pi$, for all $h_t = (x_1, \dots, x_t)$ and $h'_t = (x'_1, \dots, x'_t)$ in \mathcal{X}^t such that $x_t = x_t'$ and $\xi_t = \xi_t'$, we have

$$v_t^{\pi}(h_t) = v_t^{\pi}(h_t') = v_t^{\pi}(x_t, \xi_t)$$

A family of risk filters $\{\rho_{t,T}^{\pi}\}_{t=1,\dots,T}^{\pi\in H}$ is normalized, translation-invariant, stochastically conditionally time consistent, decomposable, and Markov if and only if transition risk mappings exist:

$$\sigma_t:\left\{\left(x_t,\xi_t,Q_t^{\pi}(h_t)\right):\pi\in\Pi,\;h_t\in\mathcal{X}^t\right\}\times\mathcal{V}\to\mathbb{R},\quad t=1\ldots T-1,$$

- (i) $\sigma_t(x, \xi, \cdot, \cdot)$ is normalized and strongly monotonic with respect to stochastic dominance
- (ii) for all $\pi \in \Pi$, for all $t = 1, \ldots, T-1$, and for all $h_t \in \mathcal{X}^t$,

$$v_t^{\pi}(h_t) = r_t(x_t, \xi_t, \pi_t(h_t)) + \sigma_t(x_t, \xi_t, Q_t^{\pi}(h_t), v_{t+1}^{\pi}(h_t, \cdot))$$

Evaluation of a Markov policy π :

$$v_t^{\pi}(x_t, \xi_t) = r_t(x_t, \xi_t, \pi_t(x_t, \xi_t)) + \sigma_t(x_t, \xi_t, Q_t^{\pi}(x_t, \xi_t), x' \mapsto v_{t+1}^{\pi}(x', \Phi_t(x_t, \xi_t, \pi_t(x_t, \xi_t), x')))$$

Examples of Transition Risk Mappings

Average Value at Risk

$$\sigma(x,\xi,m,\nu) = \min_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{\alpha(x,\xi)} \int_{\mathcal{X}} \left(\nu(x') - \eta \right)_{+} m(dx') \right\}$$

where $\alpha(x, \xi) \in [\alpha_{\min}, \alpha_{\max}] \subset (0, 1]$.

Mean-Semideviation of Order p

$$\sigma(x,\xi,m,v) = \underbrace{\int_{\mathcal{X}} v(x') \ m(dx')}_{\mathbb{E}_m[v]} + \kappa(x,\xi) \Big(\int_{\mathcal{X}} \Big(v(x') - \mathbb{E}_m[v] \Big)_+^p \ m(dx') \Big)^{\frac{1}{p}}$$

where $\kappa(x, \xi) \in [0, 1]$.

Entropic Mapping

$$\sigma(x,\xi,m,\nu) = \frac{1}{\nu(x,\xi)} \ln \left(\mathbb{E}_m \left[e^{\gamma(x,\xi) \nu(x')} \right] \right), \quad \gamma(x,\xi) > 0$$

Dynamic Programming

Risk-averse optimal control problem:

$$\min_{\pi} \rho_{1,T}^{\pi} \left\{ c_1(X_1, Y_1, U_1), c_2(X_2, Y_2, U_2), \dots, c_T(X_T, Y_T, U_T) \right\}$$

Theorem

If the risk measure is Markovian (+ general conditions), then the optimal solution is given by the dynamic programming equations:

$$\begin{aligned} v_T^*(x,\xi) &= \min_{u \in \mathcal{U}_T(x)} r_T(x,\xi,u), \quad x \in \mathcal{X}, \quad \xi \in \mathcal{P}(\mathcal{X}) \\ v_t^*(x,\xi) &= \min_{u \in \mathcal{U}_t(x)} \left\{ r_t(x,\xi,u) + \\ \sigma_t \Big(x,\xi, \int_{\mathcal{Y}} K_t^X(x,y,u) \, \xi(dy), x' \mapsto v_{t+1}^* \big(x', \Phi_t(x,\xi,u,x') \big) \right) \right\}, \\ x &\in \mathcal{X}, \quad \xi \in \mathcal{P}(\mathcal{Y}), \quad t = T-1, \dots, 1 \end{aligned}$$

Optimal Markov policy $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$ - the minimizers above

Risk-Averse Clinical Trials (Darinka Dentcheva and Curtis McGinity)

- In stages t = 1, ..., T successive patients are given drugs (cytotoxic agents), to which severe toxic response (even death) is possible
- Probability of toxic response $(x_{t+1} = 1)$ depends on the unknown optimal dose η^* and the administered dose (control) u_t :

$$F(u_t, \eta) = \frac{1}{1 - e^{-\varphi(u_t, \eta)}}$$

- The "belief state" ξ_t , the conditional probability distribution of the unknown optimal dose, is the current state of the system
- The state evolves according to Bayes operator, depending on the response of the patient: for $\eta \in \mathcal{Y}$ (the range of doses)

$$\xi_{t+1}(\eta) \sim \begin{cases} F(u_t, \eta) \, \xi_t(\eta) & \text{if toxic } (x_{t+1} = 1) \\ \left(1 - F(u_t, \eta)\right) \xi_t(\eta) & \text{if not toxic } (x_{t+1} = 0) \end{cases}$$

• Cost per stage: $c_t(\eta, u_t) = \gamma_t |u_t - \eta|$ (other forms possible) Medical ethics naturally motivates risk-averse control

Andrzej Ruszczyński

Total Cost Models

Find the best policy $\pi = (\pi_1, \dots, \pi_T)$ to determine doses $u_t = \pi_t(\xi_t)$

Expected Value Model

$$\min_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{T+1} \gamma_t |u_t - \eta^*| \right]$$

 γ_{T+1} is the weight of the final recommendation u_{T+1}

Risk-Averse Model

$$\min_{\pi \in \Pi} \rho_{1,T+1}^{\pi} \left[\left\{ \gamma_t | u_t - \eta^* | \right\}_{t=1,\dots,T+1} \right]$$

Two sources of risk

- Unknown state η^* (only belief state ξ_t available at time t)
- Unknown evolution of $\{\xi_t\}$ due to random responses of patients

Dynamic Programming Equations

- All memory is carried by the belief state ξ_t
- For each ξ_t and u_t , only two next states are possible, corresponding to $x_{t+1} = 0$ or 1

Simplified equation

$$v_{t}(\xi) = \min_{u} \left\{ r_{t}(\xi, u) + \sigma \left(\xi, \int_{\mathcal{Y}} \mathbb{P}[x' = 1 | y, u] \, \xi(dy), v_{t+1}^{*} \left(\Phi_{t}(x, \xi, u, \cdot) \right) \right) \right\}$$

Examples:

$$r_t(\xi, u) = \mathbb{E}_{\xi} [|u - \eta|]$$
$$\sigma(\xi, p, \varphi(\cdot)) = \mathbb{E}_{\xi} [\max_{x' \in \{0, 1\}} \varphi(x')]$$

Any law invariant risk measure on the space of functions on U (for r_t) or on $U \times \{0, 1\}$ (in the case of σ_t) can be used here.

Limited Lookahead Policies

At each time t, assume that this is the last test before the final recommendation, and solve the two-stage problem

Risk-Neutral

$$\min_{u_t} \mathbb{E}_{\xi_t} \left\{ \gamma_t | u_t - \eta| + \overline{\gamma}_{t+1} \mathbb{E}_{\text{response}} \left[\min_{u_{t+1}} \mathbb{E}_{\xi_{t+1}} | u_{t+1} - \eta| \right] \right\}$$

Risk-Averse

$$\min_{u_t} \mathbb{E}_{\xi_t} \left\{ \gamma_t | u_t - \eta| + \overline{\gamma}_{t+1} \max_{\text{response}} \left[\min_{u_{t+1}} \mathbb{E}_{\xi_{t+1}} | u_{t+1} - \eta| \right] \right\}$$

$$\overline{\gamma}_{t+1} = \sum_{\tau=t+1}^{T+1} \gamma_{\tau}$$
 (weight of the future)

Simulation Results for Expected Value and Risk-Averse Policies

We consider the problem of minimizing costs of a machine in \mathcal{T} periods.

Unobserved state: $y_t \in \{1, 2\}$, with 1 being the "good" and 2 the "bad" state Observed state: x_t - cost incurred in the previous period Control: $u_t \in \{0, 1\}$, with 0 meaning "continue", and 1 meaning "replace"

The dynamics of Y is Markovian, with the transition matrices $K^{[u]}$:

$$\mathcal{K}^{[0]} = \begin{pmatrix} 1-\rho & \rho \\ 0 & 1 \end{pmatrix} \quad \mathcal{K}^{[1]} = \begin{pmatrix} 1-\rho & \rho \\ 1-\rho & \rho \end{pmatrix}$$

Distribution of costs:

$$\mathbb{P}[x_{t+1} \le C \mid y_t = i, u_t = 0] = \int_{-\infty}^{C} f_i(x) \, dx, \quad i = 1, 2$$

$$\mathbb{P}[x_{t+1} \le C \mid y_t = i, u_t = 1] = \int_{-\infty}^{C} f_1(x) \, dx, \quad i = 1, 2$$

Value and Policy Monotonicity

Belief state: $\xi_i \in [0, 1]$ - conditional probability of the "good" state The optimal value functions: $v_t^*(x, \xi) = x + w_t^*(\xi), t = 1, ..., T + 1$

Dynamic programming equations

$$\begin{split} w_t^*(\xi) &= \min \Big\{ R + \sigma \big(f_1, x' \mapsto x' + w_{t+1}^* (1-p) \big); \\ & \sigma \big(\xi f_1 + (1-\xi) f_2, x' \mapsto x' + w_{t+1}^* (\varPhi(\xi, x')) \big) \Big\}, \end{split}$$

with the final stage value $w_{T+1}^*(\cdot) = 0$.

If $\frac{f_1}{f_2}$ is non-increasing, then the functions $w_t^*(\cdot)$ are non-increasing and thresholds $\xi_t^* \in [0,1], \ t=1,\ldots, T$ exist, such that the policy

$$u_t^* = \begin{cases} 0 & \text{if } \xi_t > \xi_t^*, \\ 1 & \text{if } \xi_t \le \xi_t^*, \end{cases}$$

is optimal

Numerical Illustration

Cost distributions f_1 and f_2 : uniform with $\int_0^{\eta} f_1(x) dx \leq \int_0^{\eta} f_2(x) dx$ Transition risk mapping: mean–semideviation

Empirical distribution of the total cost for the risk-neutral model (blue) and the risk-averse model (orange)

Partially Observable Jump Process

The unobserved process $\{Y_t\}_{0 \le t \le T}$: Finite state Markov jump process on the space $\mathcal{Y} = \{1, \dots, n\}$ with the generator $\Lambda(t)$:

$$\lambda_{ij}(t) = \begin{cases} \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \mathbb{P} \big[Y_{t+\varepsilon} = j \big| Y_t = i \big] & \text{if } j \neq i \\ -\sum_{k \neq i} \lambda_{ik}(t) & \text{if } j = i \end{cases}$$

The observed process $\{X_t\}_{0 \le t \le T}$: Diffusion following the SDE

$$dX_t = A(Y_t, t) dt + B(t) dW_t, \quad 0 \le t \le T,$$

with the initial value x_0 , independent of Y_0 . $\{W_t\}$ is a Wiener process.

Random final cost: $\phi(Y_T)$

Filtration of observable events: $\{\mathcal{F}_t^X\}_{0 \leq t \leq T}$

The belief state: $\xi_i(t) = P[Y_t = i \mid \mathcal{F}_t^X], \quad i = 1, ..., n,$

Belief State Equation

$$d\xi_i(s) = (\Lambda^*\xi)_i(s) ds + \xi_i(s) \frac{A(i,s) - A(s)}{B(s)} d\overline{W}_s, \quad \xi_i(0) = p_i,$$

where

$$(\Lambda^* \xi)_i(s) = \sum_{j=1}^n \lambda_{ji}(s) \, \xi_j(s), \qquad \bar{A}(s) = \sum_{j=1}^n A(j,s) \, \xi_j(s),$$

and $\{\overline{W}_t\}_{0 \le t \le T}$ is a Wiener process given by the formula

$$\overline{W}_t = \int_0^t \frac{dX_s - \bar{A}(s) \, ds}{B(s)}.$$

Suppose $\pi(t) = p$ and we use a Markov risk filter $\{\varrho_t, \tau\}_{0 \le t \le T}$. The value function for the final cost case:

$$V(t,p) = \varrho_{t,T} \left[\phi \left(Y_T^{t,p} \right) \right]$$

Structure of $\varrho_{t,T}(\cdot)$

[using Coquet, Hu, Mémin, Peng (2002)]

If the filter is monotonic, normalized, time consistent, and has the local property (+ minor growth conditions) then a driver $g:[0,T]\times\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}$ exists, such that $\varrho_t,\tau\big[\phi\big(Y_T^{t,p}\big)\big]=V_t$, where (V,Z) solve backward stochastic differential equation

$$-dV_s = g(s, V_s, Z_s) ds - Z_s d\overline{W}_s, \quad s \in [t, T], \quad V_T = \varrho_{T,T} \left[\phi \left(Y_T^{t,p} \right) \right]$$

Equivalent Forward-Backward System

Under additional condition of law invariance of $\rho_{T,T}[\cdot]$, we obtain the following system.

Forward SDE for the belief state: For i = 1, ..., n and $0 \le t \le s \le T$

$$d\xi_i(s) = (\Lambda^*\xi)_i(s) ds + \xi_i(s) \frac{A(i,s) - \bar{A}(s)}{B(s)} d\overline{W}_s, \quad \xi_i(t) = p_i,$$

Backward SDE for the risk measure: for $0 \le t \le s \le T$

$$-dV_s = g(s, V_s, Z_s) ds - Z_s d\overline{W}_s, \quad s \in [t, T],$$
$$V_T = r_T(\phi, \xi(T))$$

The functional $r_T(\cdot, \cdot)$ is a law invariant risk measure.

The Running Cost Case

Functional with Running Cost:

$$Z_T = \int_0^T c(\xi(t)) dt + \phi(Y_T)$$

The value function:

$$V(t,p) = \varrho_{t,T} [Z_T]$$

Forward SDE for the belief state: For i = 1, ..., n and $0 \le t \le s \le T$

$$d\xi_i(s) = (\Lambda^*\xi)_i(s) \ ds + \xi_i(s) \frac{A(i,s) - \bar{A}(s)}{B(s)} \ d\overline{W}_s, \quad \xi_i(t) = p_i,$$

Backward SDE for the risk measure: for $0 \le t \le s \le T$

$$-dV_s = \left[c(\xi(s)) + g(s, V_s, Z_s)\right] ds - Z_s d\overline{W}_s, \quad s \in [t, T],$$
$$V_T = r_T(\phi, \xi(T))$$

Controlled Process

Controlled transition rates: $\lambda_{ij}(t,\zeta)$, $\zeta \in U$, where U is a bounded set. The rates are uniformly bounded.

Piecewise-constant control: For $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$, we define

$$\mathcal{U}_{i}^{N} = \{u \in \mathcal{U} \mid u(t) = u(t_{j}), \forall t \in [t_{j}, t_{j+1}), \forall j = i, ..., N-1\}$$

where $\mathcal U$ is the set of U-valued processes, adapted to $\{\mathcal F_t^\xi\}_{0\leq t\leq T}$.

Value function for a fixed control:

$$V^{u}(t_{j},p) = \rho_{t_{j},t_{j+1}} \left[\int_{t_{j}}^{t_{j+1}} c(\xi^{t_{j},p;u}(s),u_{r}) ds + V^{u}(t_{j+1},\xi^{t_{j},p;u}(t_{j+1})) \right]$$

 $\xi^{t_j,p;u}(\cdot)$ is the belief process restarted at t_j from value p, while the system is controlled by $u(\cdot) = u(t_j)$ in the interval $[t_j, t_{j+1})$.

Dynamic Programming

Optimal value function: $\hat{V}(t_j, p) = \inf_{u \in \mathcal{U}_j^N} V^u(t_j, p)$

$$\hat{V}(t_{j}, p) = \inf_{\zeta \in U} \rho_{t_{j}, t_{j+1}} \left[\int_{t_{j}}^{t_{j+1}} c(\xi^{t_{j}, p; \zeta}(r), \zeta) dr + \hat{V}(t_{j+1}, \xi^{t_{j}, p; \zeta}(t_{j+1})) \right]$$

Each $\rho_{t_i,t_{i+1}}[\cdot]$ is given by a controlled FBSDE system on $[t_j,t_{j+1}]$

$$d\xi_{i}^{t_{j},p;\zeta}(s) = (\Lambda^{*}(\zeta)\,\xi)_{i}(s)\,ds + \xi_{i}^{t_{j},p;\zeta}(s)\frac{A(i,s) - \bar{A}(s)}{B(s)}\,d\overline{W}_{s},$$

$$\xi_{i}^{t_{j},p;\zeta}(t_{j}) = p_{i},$$

$$-dV_{s} = \left[c\left(\xi^{t_{j},p;\zeta}(s),\zeta\right) + g(s,V_{s},Z_{s})\right]ds - Z_{s}\,d\overline{W}_{s},$$

$$V_{t_{j+1}} = \hat{V}\left(t_{j+1},\xi^{t_{j},p;\zeta}(t_{j+1})\right)$$

Further research: Numerical methods for this FBSDE system

References

- A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes, *Mathematical Programming*, Series B 125 (2010) 235–261
- Ö. Çavuş and A. Ruszczyński, Computational methods for risk-averse undiscounted transient Markov models, Operations Research, 62 (2), 2014, 401–417.
- Ö. Çavuş and A. Ruszczyński, Risk-averse control of undiscounted transient Markov models, SIAM J. on Control and Optimization, 52(6), 2014, 3935–3966.
- J. Fan and A. Ruszczyński, Risk measurement and risk-averse control of partially observable discrete-time Markov systems, Mathematical Methods of Operations Research, 2018, 1–24.
- C. McGinity, D. Dentcheva and A. Ruszczyński, Risk-averse approximate dynamic programming for partially observable systems with application to clinical trials, in preparation
- R. Yan, J. Yao, A. Ruszczyński, Risk Filtering and Risk-Averse Control of Partially Observable Markov Jump Processes, submitted for publication.
- D. Dentcheva and A. Ruszczyński, Risk measures for continuous-time Markov chains, submitted for publication.