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Partially Observable Discrete-Time Models

o Markov Process: {X¢, Yi}i=1
The process {X;} is observable, while {Y;} is not observable

Control sets: Uy : X = U, t=1,..., T

Transition kernel: P[(X¢+1, Yi+1) € C | xt, yt, ue] = Qe(x¢, yt, ur)(C)
Costs: Zy = c¢( X, Y, Up), t=1,..., T

T on the Borel state space X x ¥

.....

Two relevant filtrations

° {“X Y} defined by the full state process {X;, Y:}
° { ¢ } defined by the observed process {X;}

Space of costs: Z; = {Z: 2 — R| Z is 7" -measurable and bounded]

Classical Problem:

min E{c1(X1. Y1. U1) + (X2, Yo, Up) + -+- + c7(X7. YT, UT)}
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Dynamic Risk Measures

Probability space (£2, ¥, P) with filtration $1 C ---C ¥ C ¥
Adapted sequence of random variables (costs) Zi, 2o, ..., Z7
Spaces: Z; of Fi-measurable functions and Z; 7 =2 x---x Z7

Dynamic Risk Measure

A sequence of conditional risk measures p¢ 7 : Ze 7 —> Z, t=1,..., T.
Monotonicity condition:

pe, T(Z) < pr,7(W) for all Z, W € Z; 7 such that Z < W

Local property: For all A€ ¥;
pt,T(IaZ) = 1apt,7(2)
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Time Consistency and Nested Representation

A dynamic risk measure {pt,r};l is time-consistent if forall 1 <t < T
Zi =W and  prg1,7(Zeg1, oo Z7) S pepr, T(Wega, ..o, WT)

imp|y that pt,T(Zt,---,ZT) fpnT(Wt,..., WT)

Define one-step mappings:  p¢(Zi+1) = pe,7(0, Zt41,0,...,0)
Nested Decomposition Theorem

. T . .. :
Suppose a dynamic risk measure {pt>T}t=1 is time-consistent, and

pt,T(O,...,O) =0
pe,T(Zt. Zew1, ... Z7) = Zt + p,7(0, Zt 41, ..., ZT)

Then for all t we have the representation

pe,7(Ze, ... ZT) = Zt + Pt(Zt+1 + ,0t+1(Zt+2 + -+ p71(Z7)) - ))
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Issues with General Theory in the Markov Setting

o Probability measure PT, processes X and ZIT depend on policy IT

@ We have to deal with a family of risk measures pgT(-)

@ The values of the risk measures may depend on history, and Markov
policies cannot be expected

@ The cost may not be observable

Motivating Example
X =1{0,1}, T =2, and Z; = Z:(x;) (cost depends on state).
Consider the risk measure
02,2(22)(x1, x2) = Z2(x2)
p1,2(Z1, Z2)(x1) = Z1(x1) + Z2(x1) (assumes that x; will not change)

It is time-consistent and has the normalization, translation, and local
properties.

As p1,2 does not depend on the distribution of x2, given xq, it is useless for
controlling Markov models. In fact, it is much worse than expectation.

v
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Conditional Risk Evaluators

Space of observable random variables:

S: = {5 92— R ‘ Sis ?tx—measurable and bounded}, t=1,..., T

A mapping p:, 7 : Z¢ X --- X ZT — S, is a conditional risk evaluator

(i) It is monotonic if Zs < W; for all s =t,..., T, implies that
pe,7T(Ze, ... Z7) < pe,7T(We, ..., WT)

(ii) It is normalized if p¢, 7(0,...,0) = 0;

(iii) It is translation equivariant if V(Z;,...,Z7) € 8 X Zyy1 X -+ X LT,
pt,T(Ztr.... Z7) = Zt + p1,7(0, Zt41,.... Z7);

(iv) It is decomposable if a mapping p: : Z; — S; exists such that:

pe(Zy) = Zy, YVZi €Sy,
pe,T(Zt,.... Z7) = pt(Zt) + pe,7(0, Zty1,.... Z7), VZ e Z:T
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Risk Filters and their Time Consistency

A risk filter {Pt,T}t=1 + is a sequence of conditional risk evaluators
pt,T - L, T — St.

We have index risk filters by policy 7, because 7 affects the measure P™
History: HF = (X1, XJ, ..., XT), ht = (x1, x2, ..., X¢)

A family of risk filters {PfT}]:jl 1 is stochastically conditionally time

consistent if for any w, 7’ € I1, forany 1 <t < T, for all h; € X?, all
(Z¢y....Z1) € Z¢,7 and all (W, ..., WT) € Z¢ 1, the conditions

Zt = Wt
(P71, 7(Ze1 - Z7) | HT = he) = (0Tp 1, 7 (Wes1, . ... Wr) | HF = hy)

imply )
p]tT,T(Zt, Zt+1’ ) ZT)(ht) = p]tT,T(Wt’ Wt+15 D) WT)(ht)

The relation < is the conditional stochastic order



Bayes Operator

Belief State: Conditional distribution of Y; given initial distribution & and
history g = (&1, x1, U1, X2, ..., Up—1, X¢)

[E:(g)](A) = P[Yr€Algd, VAeB®), t=1...T

Conditional distribution of the observable part:
PXiss € Bl geud = [ [QX 0, u0](B) dZ(e0),

where QX (xt, yt, ut) is the marginal of Q:(xt, yt, us) on the space X

Transition of the belief state - Bayes operator

Et1+1(8t+1) = Pe(xt, Et(gt). U, Xe+1)

Example: ¥ = {y',...,y"} and Q:(x,y, u) has density g:(x, y'|x, y, u)

n /L k i i
®,(x. £ u. )| ({y D) = 2i=19:(sy |x,y,U).E .
oM = S ey I yE |
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Markov Risk Filters

Extended state history (including belief states):
he = (x1, 61, %2, 62, ..., x¢, &¢) € H.

Policies w = (71, ..., w7) with decision rules ¢(h:) € Us(x)
Markov Policy
For all he, , € Hy, if x; = x; and & = &}, then
me(he) = 7Tt(h ) = me(xe, &)
Policy value function:

vi(h) = pjtT,T(Ct(Xta Yi,we(He)), ... cr (X7, YT, 7TT("'/T)))(ht)

A family of risk filters {,of T}” < LTS Markov if for all Markov policies

7 eI, for all hy = (xq,... xt) and h, = (x{,....x};) in Xt such that
xt = x; and & = &, we have

(h ) = Vf(h/) = v{ (X, &)
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Structure of Markov Risk Filters (with Jingnan Fan)

A family of risk filters {p’t’T}jtfl ris normalized, translation-invariant,
stochastically conditionally time consistent, decomposable, and Markov
if and only if transition risk mappings exist:

Gt:{(xt,ét,Qf(ht)):nEH, htext}XV%R, t=1T—1,

(i) o¢(x,&,-,-) is normalized and strongly monotonic with respect to
stochastic dominance

(i) forall w € [T, forall t =1,..., T —1, and for all h; € X,

vi (he) = re(xe, &, we(he)) + O—t(Xt»ét, QY (he), v (he, '))

Evaluation of a Markov policy 7:

Vi (Xe, E¢) = re(xe, &, e(xe, E1)) +
O't(Xta £, QF (x. £0), X' > vf+1(x’, De(xe, Er, e (xt, Et),X/)))
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Examples of Transition Risk Mappings

Average Value at Risk

. 1 / /
o(x,E,m,v) = L’rgﬂré {77 + 20D /x (v(x) - n)+ m(dx )}

where a(x, ) € [@min, @max] C (0, 1].

Mean—Semideviation of Order p

1

E.mv) = / dx’ ’ N_E,, p dx’ p
o gimv) = [ vy mia) w6 [ (v0) = Bnlv);, mi)
Eplv]

where k(x, &) € [0,1].

Entropic Mapping

o(x,&,m,v) =

V(j» " (En|e9+]). yix®) >0 |
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Dynamic Programming

Risk-averse optimal control problem:
min pT r{a (X1, Y1, U1). &2(X2, Yo, Ua), ... cr (X7, Y7, UT)}

Theorem
If the risk measure is Markovian (+ general conditions), then the optimal
solution is given by the dynamic programming equations:

vi(x, §) = uer%}iTn(x) rr(x, &, u), xeX, &eP(X)

vy (x, &) = ) min : {rt(x, £, u) +

€U (x

at(x, E,/ny(x,y, u) £(dy), x' v;"+1(x/,¢t(x, £, u,x’)))},
xeX, E€P®), t=T-1,...1

Optimal Markov policy IT = {#1,...,77} - the minimizers above
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Risk-Averse Clinical Trials (Darinka Dentcheva and Curtis McGinity)

o Instages t = 1,..., T successive patients are given drugs (cytotoxic
agents), to which severe toxic response (even death) is possible

@ Probability of toxic response (x¢+1 = 1) depends on the unknown
optimal dose n* and the administered dose (control) u;:

Fluen) = 1 — e—@(uen)

@ The "belief state” &;, the conditional probability distribution of the
unknown optimal dose, is the current state of the system

@ The state evolves according to Bayes operator, depending on the
response of the patient: for n € ¥ (the range of doses)

F(ut, 77) Et(n) if toxic (Xt+1 = 1)
Ett1(n) ~ i i -
(1= F(ue, m) Ee(n)  if not toxic (xe4+1 = 0)
o Cost per stage: ct(n, ut) = yt|us — 1 (other forms possible)

Medical ethics naturally motivates risk-averse control
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Total Cost Models

Find the best policy m = (71,...,7T) to determine doses u; = m¢(&;)

Expected Value Model

T+1
];neipsz”[ ; yelue - n*l]

yT+1 Is the weight of the final recommendation ut41

Risk-Averse Model

. m *
min br —
nenpl.r+1|:{yt| = |}t=1"”’T+1:|

Two sources of risk

@ Unknown state n* (only belief state &; available at time t)

@ Unknown evolution of {£;} due to random responses of patients

v
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Dynamic Programming Equations

@ All memory is carried by the belief state &;

@ For each &; and vy, only two next states are possible,
corresponding to x;41 =0 or 1

Simplified equation

ve(§) = min {rt@, 0+ o6 [ P =11y 6. vipa (et -)))}

Examples:
re(§,u) = ESUU - 77|]

,p.¢(-)) = E¢[ ma '
o (£ p.e()) g[x,rg{oﬁ}w(x )]
Any law invariant risk measure on the space of functions on U (for r)

or on U x {0, 1} (in the case of o) can be used here.
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Limited Lookahead Policies

At each time t, assume that this is the last test before the final
recommendation, and solve the two-stage problem

Risk-Neutral

nlitn Eét{yt“’t — 0l + Y41 Eresponse[mjﬂ E§t+1|ut+1 - 7)|]%

Risk-Averse

response L u;41

rr)lin ]E&{yﬂut — 7| + Ye41 max [min E5t+1|ut+1 — r)|]%
t

T+1

Vi1 = Z Y= (weight of the future)
t=t+1
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Simulation Results for Expected Value and Risk-Averse Policies

Distribution of Dosage

04
T=20 Risk-Averse Lookahead
nt=26
0.3
Expected Value Lookahead
02
0.1
OO L I L L L L L L L L L L L L L L T L
1.0 15 20 25 * 30 35 4.0

N1
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Machine Deterioration (with Jingnan Fan)

We consider the problem of minimizing costs of a machine in T periods.

Unobserved state: y; € {1,2}, with 1 being the “good” and 2 the “bad” state
Observed state: x; - cost incurred in the previous period
Control: u; € {0, 1}, with 0 meaning “continue”, and 1 meaning “replace”

The dynamics of Y is Markovian, with the transition matrices Kl

o_(l=-p p m_(l—-p p
“ _(0 1) « _(1—/3 P)
Distribution of costs:

C
P[xmgc\yt:i,ut:o]:/ filx)dx, i=1,2
—0o0

C

Z/D’[Xt+1§C\yt=i,ut=1]=/ fi(x)dx, i=1,2
o0
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Value and Policy Monotonicity

Belief state: & € [0, 1] - conditional probability of the “good” state
The optimal value functions: v (x,§) =x+wf(), t=1,..., T +1

Dynamic programming equations
w(£) = min {R +o(h.xX =X +wi,1-p);
0(6h + (1= 6, x 1 X + Wiy (PE X))

with the final stage value wy_,(-) = 0.

If ;1 is non-increasing, then the functions w{ (-) are non-increasing and
thresholds g€y €[0,1], t =1,..., T exist, such that the policy

S 0 if & > E&;,
C L ifE <gr,

is optimal

v
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Numerical Illustration

Cost distributions f; and f: uniform with [i fi(x) dx < [} f(x) dx
Transition risk mapping: mean—semideviation
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Empirical distribution of the total cost for the risk-neutral model (blue)
and the risk-averse model (orange)
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Partially Observable Jump Process

The unobserved process {Y:}o<t<7: Finite state Markov jump process on
the space ¥ = {1, ..., n} with the generator A(t):

Ag(t) = LJrB EP[Yt-I'B_J‘Yt_I] if jA£i

—Z,qé,-)t,'k(t) ifj=1i
The observed process {X;}o<t<7: Diffusion following the SDE
dX; = A(Ye, t) dt+ B(t) dW;, 0<t<T,
with the initial value xg, independent of Yy. {W,;} is a Wiener process.

Random final cost: ¢(Y7T)
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The Belief State Equation (Wonham, 1964)

Filtration of observable events: {F}o<i<T
The belief state: &;(t) = P[Yt =] 5’7tx], i=1,...,n,

Belief State Equation

A(i,s) — A
déi(s) = (A™§)i(s) ds + fi(s)w

B(S) dWS? SI(O) = pl'a

where

(A*6)i(s) = D L) (). Als) = D AG.5) §(S).
Jj=1 j=1

and {W }o<t<T is a Wiener process given by the formula

—  [tdX,—A(s)ds
W= [ S

V.
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Risk Filtering by BSDE (with Ruofan Yan)

Suppose 7 (t) = p and we use a Markov risk filter {Qt’T}

. 0<t<T"
The value function for the final cost case:
V(t.p) = or,7 [#(Y5")]
Structure of 0¢,7(-) [using Coquet, Hu, Mémin, Peng (2002)]

If the filter is monotonic, normalized, time consistent, and has the local
property (4 minor growth conditions) then a driver

g:[0, T] x R x R" — R exists, such that o r[¢(Y7")] = Vi, where
(V, Z) solve backward stochastic differential equation

—dV, = g(s, Ve, Z) ds — Zs dW, se[t.T], Vr=orr [qﬁ(Y-;’p)]

v
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Equivalent Forward-Backward System

Under additional condition of law invariance of p7 7[:], we obtain the
following system.

Forward SDE for the belief state: For i=1,...,nand0<t<s<T

A(i, s) — A(s)
B(s)

Backward SDE for the risk measure: forO0 <t <s< T

d&i(s) = (A*§)i(s) ds + &(s) dWs, &(t) = pi

—dVs = g(S, Vs, Zs) ds — Zs dWs» s € [t» T],

Vr = rr(¢.£(T))

The functional rr(-,-) is a law invariant risk measure.
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The Running Cost Case

Functional with Running Cost:

]
Zr = [ clev) de +90vm)

The value function:
V(t,p) = ot,7I[27]

Forward SDE for the belief state: For i =1,...,nand0<t<s<T

A(i, s) — A(s)
B(s)

Backward SDE for the risk measure: for0 <t <s< T

d&i(s) = (A*§)i(s) ds + &i(s) dWs, &i(t) = p;.
—dVs = [c(£(s)) + g(s, Vs, Zs)| ds — Z; d W, s €[t, T],

Vr = rr(¢.£(T))
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Controlled Process

Controlled transition rates: A;(t,¢), { € U, where U is a bounded set.
The rates are uniformly bounded.

Piecewise-constant control: For 0 = tg <t <th <--- < ty = T, we define
UM ={ueU|ut)=ut). Ytelttip), Yi=i....N—1}

where U is the set of U-valued processes, adapted to {$t§}0<t<T'

Value function for a fixed control:
EaE .
VG = prga| [ €8P0 d V(0.5 )
&

g5PU(-) is the belief process restarted at t from value p, while the system is
controlled by u(-) = u(t) in the interval [t;, tj11).
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Dynamic Programming

Optimal value function: V(g,p) = inf,cqn VY(8, p)
J

5

A Git+1 . n .
V(t,p) = giglfj,otj,tjﬂ[/t c(E5PE(r), ¢) dr + V(§'+1,§§’p’§(l}'+1))] J

Each p.4,[] is given by a controlled FBSDE system on [t;, tj+1]

A(i,s) — A(s)

477 (5) = (A" Q) 8)i(s) o5 + 67 (9) = o= W
giP: f(t) = pj,

—dVs = [c(§9P%(5).¢) + g(s. Vi Z)| ds — Z, d W,
Vi, = ‘7(9+1, étf’p;g(fjﬂ))
Further research: Numerical methods for this FBSDE system
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