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The filtering problem

The filtering problem

Yo Y1 Yo

Hidden Markov model represented as a graphical model

Signal: latent Markov chain Xy, € X, transition kernel P;(z,dz’) and initial
distribution v

Emission densities: Data Y, € ) with conditional density fx(y)
(also consider non-dominated filtering models)

Goal: evaluate the filtering distributions v, (dz) := £L(X¢,, | Y0o,...,Yn)

Subcase: if Xy, = X¢; =---, it’s a classical Bayesian inference problem
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Statistical applications

The filtering distributions v, (dz) := L£(X¢,, | Yo, ..., Ys) are the backbone of all
statistical estimation problems in this framework, such as:

@ prediction of future signals, via £(X¢, ., |Y0,...,Yn)
@ derivation of smoothing distributions £(X;, ,|Y0o,...,Yy)

@ calculation of the marginal likelihood (in the dominated case)

L(ys,. .. yn) = /X Foeg Wo)dv(ae) T /X foe, )AL, 90, - 9i1)
i=1

rk
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Filtering recursions

Mathematically, it’s the solutions to the recursion

Vg = ¢Yo (V) ; Un = ¢Yn (wtnftn,1(l/n))) n > 01

where for probability measure &:

_ J=(y)¢(da)
pe(y)

conjugate pair  (fz,F): E€F = ¢y(§) € F

Update: by (€)(dz) , pe(y) = /X fa(y)€(dx)

Prediction: wt(g)(dm/):/ &(dz) Py(x, dz’)
X

Note that update and prediction operators satisfy

Current work

%(éwi&) ZZ vive, (v) 04(E0), wt(Zwléz) :;wm(&)
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Finite-dimensional filters

A finite-dimensional filter is a solution to the previous recursion s.t. there exists a
finite-dimensional family 7y of probability measures and

veFp = yw)duv) € Fy
so evolution of the mixtures can be described by successive transformations of a

finite-dimensional parameter

Examples:

o “Nonparametric”: any model where X is finite set (Baum filter)
@ Parametric: linear Gaussian system (Kalman filter)
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Discrete state space - Baum/Welch filter

The finite-dimensional filter is obtained by the definition of update/prediction
operators & their action on mixtures (1):

£ = {ai,i S M} - &= Z a_,-éj
jEM

(o)=Y Pii,5)5; = @)= ap(d:)= > | D aiPi(i,5) |

JEM 1EM JEM \ieM
Po(v) = fiw), y(G) =61 = SO = (%) 5;

jeM

Crucially, the complexity of these calculations are O(|M|) for the update, but
O(|M]?) for the prediction. Depending on the application, |M| might be constant
or increase over time.

rk
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Other finite-dimensional filters?

@ See for example, Runggaldier & Spizzichino (Bernoulli, 2001)
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Motivating model: Cox-type process

Dynamic version of the standard conjugate Bayesian model for count data:
Yn|X¢, ~ Poisson(Xy,)

Xt, Markov chain with gamma marginal

For example

Xt == Ug

n

Un

2
aUp—1+ Bn, with stationary N (O, 1'872> when |a| < 1
—a

Current work



Computable filters

More generally, we can relate the signal to the Feller/square root/CIR
process/continuous-state branching process with immigration, e.g Kawazu &
Watanabe (Theory Probab. Appl., 1971)

dX: = (602 —2yXy)dt + 20/ X¢dBy, 6,v,0 >0

This process for § > 2 it has a stationary and limiting distribution, which is

gamma(3/2,v/0?)

For the economy of this talk, we focus on § > 2 (otherwise the boundary
behaviour needs to be explicitly specified).
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For this process, we have the following properties: the first is beautiful, the second
incredible!

Pi(w,da’) = 3 Poi - kaoj2, L
(0, .’E)—kgz) oisson | k; —5 —5—— ¢ | gamma +6/ QTl .

Y (gamma(m + §/2,0)) =

m 2~t
Z < m,lQ(GeQ’Yt—i-'y/U2 —9)71) gamma (k+6/ 66—) .
— o

2 Qe27t + ,\//0-2



Computable filters

@ When § = 1, these expressions can be obtained by elementary calculation,
e.g. Genon-Catalot & Kessler (Bernoulli, 2004).

@ The general case requires clever and lengthy calculations and is done in
Chaleyat-Maurel & Genon-Catalot (SPA, 2006) - we return to this later.

@ Note that the stationary density is obtained as invariant from the finite and
as a limit from infinite mixture

@ Note that we can obtain the infinite mixture from the finite by appropriate
choice of 6 and m — oco. In that limit gamma(m + §/2,6) — d5.

@ Implications for filtering; recall that

fylz) x a¥e™™

In this model, the filtering distributions evolve in the family of finite mixture of
gamma distributions, but with a number of parameters that is increasing with n.
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Computable filters

We will classify a filter as computable when v, is characterised in terms of a finite
number of parameters that can be computed at a cost that grows polynomially
with n.

Special case are finite-dimensional filters for which the number of parameters does
not grow with n, hence the cost of computing them grows linearly with n.

The CIR/gamma model is an example of a computable filter.
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A first round of questions

@ Are there other models for which computable filters can be devised?

@ Is there a methodology that applies to all such filters as well as to the
Kalman and Baum/Welch?

@ What is their computational cost?
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Models

Computable filters are available for dynamic versions of all standard conjugate
finite-dimensional Bayesian models

@ K-dimensional linear diffusion (Gaussian-Gaussian), Kalman filter

Feller/CIR/CBI process (gamma-Poisson)

o 1-dimensional Wright-Fisher diffusion (beta-binomial)

o K-dimensional Wright-Fisher diffusion (Dirichlet-multinomial)

Later in the talk we mention results for infinite-dimensional models
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Methodology

Our work reveals that the answer to the earlier questions relates the dual process.

Duality methods have a long history in Probability, dating back to the work of
P. Lévy - see e.g. Jansen & Kurt (arXiv, 2013) for a recent review.

Widely applied to the study of interacting particle systems and population genetic
models.

To solve the filtering problem, we require a dual that in general is given by two
components: a deterministic process (dynamical system) and a (multidimensional)

death process with countable state-space.

This approach - among others - yields duals that do not seem to have appeared
before.

Computable filtering consists of filtering out the death process in a way akin to
the Baum/Welch filter.

The dual is identified by studying the generator of the signal.
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The plan

Sufficient conditions for computability
Local duality (generators)
Filtering algorithm

In the next section of the talk we will see the conditions in action in the
aforementioned models



The filtering problem Computable filters Filtering and duality Examples Extensions/Current work

Conditions

A1l (Reversibility): w(dz)P;(z,dz’) = w(da’) P (2’, dz).

Notation:
M:Zf:{m:(ml,...,mK):mj€Z+, j=1,...,K}

0; e;; |m| = >, m;; product order on M; m —ifor i <m
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A 2D example for M
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A2 (Conjugacy): For @ CR!, 1 € Zy,let h: X x M x © — R be such that
sup,, h(z,m,0) < oo for allm € M, 0 € ©, and h(z,0,0) =1 for

some 0 € O.
F ={h(z,m,0)n(dz), m € M,0 € O}

assumed to be a family of probability measures s.t. there exist
functions t : Y X M - M and T: Y X © — O with m — ¢(y, m)
increasing and such that

¢y (h(xz,m,0)r(dx)) = h(z,t(y,m), T (y,0))n(dz) .

Note:
Jz(y)h(z, m, 0)

h(z, t(y, m),T(y,0))

ph(w,m,@)ﬂ(dw) (y) = C(m7 0, y) =

which does not depend on z.
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A3 (Duality): Let r: © — O, A\ : Z; — R be increasing, p : © — R4 be
continuous, and consider a Markov process (M, ©¢) with
state-space M X © such that:

d6,/dt = r(0¢), ©g =6y,

when at (M;, ©;) = (m, ), the process jumps down to state
(m — ej,0) with instantaneous rate

A(lm[)p(@)m; .

and it is dual to X+ wrt functions h, i.e.,
Vre X meM,0e€0O,t>0:

E*[h(X:, m, 0)] = E™ D [h(z, My, ©4)]

When K =0 or [ = 0 the dual is just ©; or M;
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Remarks

Absorption/Ergodicity
@ M; can only jump to “smaller” states and O is absorbing

Duality functions

@ Radon-Nikodym derivatives between measures that are conjugate to the
emission density

Transition probabilities

pmn(t;0) =P[My =n|My=m,0p=6], nmeM, n<m.

@ analytic expressions exist (Proposition 2.1)
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Duality and optimal filtering pt 1: propagation

Proposition
Under A1-A2-A3

Pi(h(z, m,0)m(dz)) = > Pmm-ilt;0)h(z, m —i,0;)r(dx),
0<i<m

Proof.

wt(h(z,m,e)w(dm)):/Xh(x,m,e)w(dx)a(m,dx/): /Xh(m,m,e)w(dx/)a(m/,dx)

=n(da’)E® [R(Xs, m, 0)] = m(da’)E®O[h(z!, My, ©y)]
= Z Pm,n(t;0)h(z’,n, O)mw(dx’)

n<m
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Duality and optimal filtering pt 1: update

Proposition

For
Ff= {ZmeAwmh(x,m,G)ﬂ'(da:) :ACM, A <o, wm >0, ZmeAwm = 1}.

and under A1-A2-A3, .7-_'f is closed under prediction and update:

Py (ZmeA Wmh(z, m, 9)w(dr)> = Zn@(ym @nh(z,n, T(y,0))r(dr)
with
t(y,A) :={n:n=t(y,m),m € A}

’Lﬁn O(’I,UmC(IIL 97 y) fOT n= t(ya m) ) Z

= 1l
net(y,A) o g
and

(X wnr@mor@) = 5 (5 wwpnn(t) )il o)m(d).

meA neG(A) "meA,m>n
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Remarks

Multiple sums
@ number of terms of the sum over all m > n grows with the dimension of M

G(A)

@ states that are accessible from the nodes in A, see 19

Creation of new components

@ each update leaves the number fixed, but shifts indices, which are then filled
up by the propagation
Mixture structure

@ arises due to uncertainty about the state of the death process
(time-discretisation) - weights relate to transition probabilities

Dual
@ how can we find such dual??
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Generators

(Care is needed with domains but will skip for economy of time)

The generator of a Markov process X, with semigroup operator P, is a linear
operator A with domain denoted Z(.A), linked to the semigroup operator via the
Kolmogorov backward equation

SPI@) = (APD@), €A,

where on the left hand side P;h(z) is differentiated in ¢ for given z, whereas on the
right hand side, A acts on P;h(z) as a function of z for given ¢
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Local duality

(Care is needed with domains but will skip for economy of time)

If X; solves an SDE on R¢
dX: = b(Xt)dt + O'(Xt)dBt s

then its generator is

d af(x) 1 & 9% f ()
(AfN(@) =D bi(z) +2 3 aii@) . feA),
; ox; 2 Z_g::l J Ox;0x;

for a; j(z) == (O'(CE)O'({E)T)Z'J'
If (M¢, ©;) is Markov process as in A3 its generator is
K l

(Ag)(m,0) = A(Jm|)p(6) >~ m;lg(m—e;, 0)—g(m, 0)]+) _ ri(6)

=1 i=1

dg(m, 0)

) -@A7
50 g€ 2(A)



The filtering problem Computable filter: Filtering and duality Exampl Extensions/Current work

A4 (Local duality): The function h(z, m,0) defined in A2 is such that h(z, m,0),
as a function of x belongs to Z(A) for all (m,0) € M x O, as a
function of (m, 0) belongs to Z(A) for all z € X, and
Vee X, me M, 0O

This implies the duality in A3.

(Proof: resolvents/Laplace transforms)
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Filtering Algorithm

A5 (Initialisation): The initial distribution of the signal is
v = h(z,mq, 6p)m(dz) € F, for some mg € M, 0y € O.

Yo Yl Y2
Figure: The partially observed Markov process dual to the

hidden Markov model in Figure 3, where D; = (M;, ©;).

L(Xt, |Yo,...,Yn) :/h(ac,t(Yn,]Wn),T(Yn,9n))7r(dac)d£(Dn\Y0,...,Yn,l).
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Complexity

L(Dy|Yo,...,Y,—1) has support on Ay, x {0} with A1 = G(t(Yn,An)) and
weights that can be computed recursively.

The component probabilities at time n can be computed at a cost that is at most
O(\An|2)7 but A, increases with n.

Proposition

Under the assumption that t(y, m) = m + N(y), where N : Y — M, we have that

n d K
|An=G<m + Nofi)>< 1+ =

where dpn, = lmo + > | N(Y5)].

When the observations follow a stationary process, dy will be of order n, thus
overall complexity of filtering O(n?), where the constant depends on K but not n
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Examples

I will focus on the properties of the signal and illustrate the dual. Clearly, for
computable filtering we need the emission density to be conjugate to the family F.

I will present results for:

@ Linear diffusion signals - only deterministic dual

o CIR signals - both deterministic and death process dual
Due to time constraints I will skip results for:

@ Multi-dimensional Wright-Fisher signals - only death process dual
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Linear diffusion signals

SDE )
dX: = —L(Xt — ’y)dt + \/iadBt s
(0%

Invariant measure
m(dx) = Normal(dz; v, a) .

Generator
A= (P fa-otafa) L 1 o2 L
= (c*y/a—oc°z/a)— + o —
7 dz dz?

Duality functions

) = (2)! o {2 =) Nomler)
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Linear diffusion signals
Kalman filter - in 1 line

A small calculation yields:

o2

AR (@) = = ) o)+ 2020 = /) S ).

Hence the dual is purely deterministic and described in terms of the ODEs:

2
dpe /dt = U—('y —pe)dt,  dry/dt = 20%(1 — 7 /a)dt.
a
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CIR signals

Some care is needed with domains
SDE, for 0 > 0,7 > 0,6 > 2

dX; = (602 — 2vX¢)dt + 20/ Xd By

Invariant measure
7(dz) = gamma(da; §/2,v/0?) .

Generator )

d d
A= (602 — 2vz)— + 2020 —,
(8 7I)dngersz

Duality functions

W) = f(g/(sz)m) (%) 00r2rmam exp(— (0~ 7/o*)z}
gamma(dxz; /2 +m, 6)
m(dx)
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CIR signals

A direct calculation yields:
Ah(,m,0)(x) = 2ma20h(z,m —1,0) + o2(6 + 2m)(0 — v/o})h(z,m + 1,0)
a2[2mb + (6 + 2m)(0 — v/o2)|h(x, m, )

We consider a two-component process (M, ©;) with generator A as in (2), where

A(m) =2mo?, 7(0) =20%0(y/0> —0), pB)=0.

A direct calculation gives
Ah(-,m, 0)(x) = Ah(z,-,-)(m,0) .
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CIR signals

Under this setting

v fe27t

02 et + /02 — 0

which implies that the transition probabilities for the death process simplify to
binomial probabilities

. . il —
DPm,m—i(t;0) = Bin (m —i;m, ;(9627’5 +~/0% —6) 1)

O =

which in turns immediately yields the result

Y (gamma(m + §/2,0)) =

~ 962'yt )

o . v 2+t 2 -1
;B1n<k,m,§(96"’ + /0 —0) )gamma(chré/Q,?m
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Numerical implementation - approximations

The framework lends itself to software implementation. User only needs to specify

The h functions

@ emission density

@ solution to the ODE

@ the two functions related to the rates of the death process

This feeds into a model independent code that carries all computations, regardless
of the dimensions of X;,Y,, 0, M; to do

o Filtering

@ Likelihood estimation

@ Forward simulation - backward sampling

Unless the filter is finite-dimensional, the exact filtering algorithm is impractical
with large number of observations, due to the polynomial increase in
computational cost

However, most of the components can have negligible weights and simulations
show this - even for non-stationary signals. The number of components with
non-negligible weight to which the filter stabilises is under study. An
implementation based on pruning has linear computational cost and simulations
suggest very small error

We are also investigating the use of this machinery for approximate filtering
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Infinite-dimensional signals

In Papaspiliopoulos, Ruggiero and Spand (2013), we have obtained similar results
for infinite-dimensional signals that correspond to dynamic versions of standard
Bayesian nonparametric models. Note that in such models there is no common
dominating measure for the emission distributions, hence there is no likelihood

o Fleming-Viot measure-valued diffusion (Dirichlet process prior)
o Dawson-Watanabe process (gamma process)

There is an interesting connection between the dual we use in these calculations
and the famous Kingman’s coalescent with mutation
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Spectral decomposition of generators

@ Classic results exist about generators with countable spectrum and
expansions such that the Poisson-gamma mixture for the CIR

@ This is related to computable filtering but the connection is not well
understood
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