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1. Introduction

Introduction

Covariance estimation is crucial for

risk management
portfolio management
strategic asset allocation
asset pricing

hedging

quantification of systemic risk

= Benefit from high-frequency data!

2|58
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® Recent literature shows strong empirical evidence for distinct time
variations in daily and long-term correlations between asset prices.

® But: Surprisingly little is known about intraday variations of asset return
covariances.

Questions:

® Do covariances, correlations and betas systematically vary within a day
= Is there intraday correlation risk?

® How do covariances, correlations and betas behave in extreme market
periods?
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Why Important?

® [ntraday risk management:
Assess intraday correlation risks.

® Market microstructure research:
Studies on HF trading, impact of market fragmentation, benefits of
circuit breakers.

® Analysis of days with distinct information & “Flash Crashes”:
Asymmetry of correlation behaviour during bull /bear markets at lower
frequencies (e.g., De Santis & Gerard, 1997).
= Similar effects during intraday intervals?

e Crucial for co-jump tests (e.g. Bibinger & Winkelmann, 2014).
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In a perfect world ...

® Consider a d-dimensional continuous martingale price process,
X, = Xo + /tzl/z(s) dBs ,t € [0,1],
0
where B; denotes a standard Brownian motion.
® Objects of interest: fot Y(s)ds and 3(s).

® If X; is discretely observed with X;/,,i =0,...,n, a natural estimator
for fot Y(s)ds is

n

RCn = (Xi/n — X(i—1)/n) Xi/n — X(i—1)/m)

i=1
with

vec (n1/2 (ch - /1 (1) dt)) £, N(o, /1 (2(t) @ S(t)dt) z) .
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Example
® Ford=1:
1 . 1
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Real Intraday Price Path
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Realized Covariances in Practice
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e Challenges:

o Market microstructure noise

e Asynchronicity of observations
e Efficiency

e Positive definiteness

® Approaches:

e Hayashi/Yoshida (2011)

Realized kernels (Barndorff-Nielsen et al, 2011)
Pre-averaging (Christensen et al, 2012)

QML (Ait-Sahalia et al, 2010)

Spectral estimation (Bibinger/Reiss, 2013)

® Open questions:

e How to optimally deal with asynchronicity and different speeds in
observation frequencies?
e How to construct spot covariance estimators?
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This Paper

Log-prices AAPL/XOM 2009/07/02

Extend and adapt Local

Method of Moments (LMM)
™ approach by Bibinger et al.
| (2014) to spot covariance
A, matrix estimation.

= Build on locally constant

approximations of the process
= Robust to microstructure
B y ;A A x noise and asynchronicity.

intraday recordings
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Allow for autocorrelated noise and propose consistent autocorrelation
estimators.

= Can use tick-by-tick data.
Derive stable central limit theorem.

= Prove rate optimality of estimator.

Simulation study shows optimal implementation of estimator.

® First empirical evidence on spot covariances & correlations.
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Relation to Literature

® Integrated covariance matrix estimation:

Hayashi/Yoshida (2011);
Barndorff-Nielsen et al (2011);
Christensen et al (2012);
Ait-Sahalia et al (2010);
Bibinger et al. (2014).

® Spot volatility estimation:

e Foster & Nelson (1996);
e Kristensen (2010);

e Mancini et al. (2012);
e Bos et al. (2012);

e Zu & Boswijk (2014).
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2. Local Method of Moments: Univariate Setting
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Univariate Setting

e Consider equi-distantly observed (log) price process:

Y;/n:Xi/n+5i/n7 t=1,...,n, (SO)

dXt = G(t)dBt, Ei/n 1’51 N(Oynz)a

where €;/,, denotes microctructure noise with variance 772.

® Experiment (&) is asymptotically equivalent to the " continuous-time
white noise” process

dY, = X.dt + »dW;, (&1)

where X; L W, and ¢ :=n/\/n.

® Asymptotic equivalence (in the Le Cam sense) for n — oo provided a
certain Holder-regularity of o, (Reiss, 2011).
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Local Parametric Approximation

o Consider blocks [kh, (k+1)h],k=0,...,h7" — 1.
® Assume that block lengths shrink sufficiently fast with increasing n:
he = o(n71/4) for ac € (1/2,1].

® Observing (£o) is asymptotically equivalent to observing
dY, = X['dt + pdWi, (&2)
with the efficient (log-) price process
dXP = |o()]ndBe, [t = Lt/h]h,

where |o(t) | denotes the block h-specific constant volatility.
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® On block k, we have
Vi = XE 46, i*=i—khn,
with
dXf. = opdBy=, t*=t—kh, te[kh,(k+1)h],

ok spot volatility at the beginning of block k.

® Observed returns:

Af/ﬁ = ?Zk _Y/ili—l = AX,ZC* + €ix — €ix—1,

with AXE "X N (0,02 /n), e+ 5" N(0,7%) and i* = 1,...,nh.

e AYE follow MA(1) process with E [A?ﬁ] =0 and

or/n+20* if 1=0
Cov [Afg’:,AYi’:_l] —{ 2 it o=1
0 otherwise.
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Spectral Statistics

® |dea: Constructing a statistic in the spectral domain which yields maximal
information about |0 (%) ]x.

® Define a set of block-specific functions ¢, (t) which form an othornomal
system in L2([0 1]

e Defining ®;x(t) := [ ¢jx(t)dt and setting ®;,(kh) = ®;x((k + h)h) =
yields
(k+1)h (k+1)h (k+1)h
[ enowi= [ noxtate [ gmaw,
kh kh

(k+1)h (k+1)h
[ ealo0hanrs [ eutaw
kh

(k+1)h 1/2
</ % (t)[0® (1) ndt + 1112) Eiks
kh

where (€;x);>1 is N(0,1) and independent across j.

e
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® Maximizing information load of f(kH)h x(1)dY; wrt to |0 (t)|n vields

t—kh) .
wjr = /2/hcos [(7}1)]”] 1 ikn, (k+1)h)
with antiderivative given by

V2h t—kh
q)jk = ]T sin (7h) 1{kh (k+1)h}-

;:H)h ©;k(t)dY:, we have

(E+DR 2 2
Sjk ~N 0,/ q)]-kl_d(t) Jhdt-i-l/J
k

® Then, for the statistics Sji =

h

(k+1)h
=N (O,U(kh)Q/ OFpdt + o
kh

where o(kh) = |o(t)]r for t € [kh, (k + 1)h].

® Thus: Sji ~ N( ,J27r2 (kh)+1/))
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Non-Equidistant Observations

® Consider the process
Yi =Xy, + ¢, (&)

where t; = F~1(i/n), where F : [0,1] — [0, 1] is a differentiable cdf with
F’() > 0 denoting the local observation density.

® Then, (&) is asymptotically equivalent to
dY, = Xedt + p(t) AW, (&1)
where (1) /= 1/ /AT 7]
® |ocally constant approximation:
dY: = X{'dt + [¢(t) | ndWr, (&)

with [$(6) Jn = 2= | )
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® Then, under (£5), we have

(k+1)h (k+1)h (k+1)h
/ ()Y, = / o XIdt + / i L(t) )W,
kh kh kh

L (llojx|Po(kh)? + w(kh)*) 2,
where & ~ N(0,1).

® Hence:

2
g~ 12 2, T
S~ (0.1l Polin + ).

with ||@;5]]% := [UFD" @2, (1)dt = h?/j2n2.
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Local Method of Moments Estimation

® nh — 1 independent moment estimators of o:

2

&?k = ||(I)ij_2 <Sj2k_#(kh))’ ji=1...,nh—1.

® Combine them to:

nh—1 nh—1

~2 ~2 .
6 = E Wik O with E wj = 1.
j=1 j=1

® Minimize variance by choosing weights prop. to Fisher inf. of 632k:

2
I 1 ( 2 o
ot ik =5 ok F Pl — .
R T AN ! nF’(kh)

Wik =

21|58
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Estimation of Integrated Variance

e Estimator of fol o2dt:

nh—1 nh—1

n1

~ LMM — ~

VT =h > LY Lk 6 Iki= > L.
k=0 j=1 j=1

e CLT with n'/* rate and AVAR = 8 fol opdt (Reiss, 2011).
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3. Estimation of Spot Covariances



3. Estimation of Spot Covariances

Setup

e Efficient log-price X follows continuous It6 semi-martingale:
t t
X =Xo+ bsds—i—/ osdBs, t €[0,1],
0 0

where B; is d-dimensional standard Brownian motion.

® (d x d) spot covariance matrix: X = sl .

® Observations are non-synchronous and noisy:

y® = X<”>+e(f'> i=0,....,np,p=1,...,d,

1@

with observation times ¢; 2

and observation errors €;

® lLet n = min n, denote number of obs. of "slowest” asset.
1<p<d

= HF asymptotics with n/n, — vp for 0 < v, < 1.

24 | 58

(1)

(2)
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Assumption 1

(bs)scfo,1) is a cadlag process with by € C*([0,1],R?) for some R < oo and
some v > 0.

Assumption 2

(i) (0s)se[o,1] follows a cadlag process with ¥, = os04 > % uniformly for some
strictly positive definite matrix X..

(if) For . € C™"([0,1], ]RdXd/) with R < oo and « € (0,1/2],

os = f(o8", 07 with f: R?4*2¢ — R continuously differentiable, where

1) . . A . .
a§ ) is a continuous Ité semi-martingale and

o € C*R([0,1], R with R < oc.
(i) For o5 € C*F ([0, 1},]Rdx‘i/) with R < oo and o € (1/2,1], o'V vanishes.
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Assumption 3

(i) e = {egm,i =0,...,np,p=1,...,d} is independent of X and egp) is
independent of e;‘” Vi,j and p # q.

(ii) At least first eight moments ofegp),i =0,...,np, exist forp=1,...,d.
(iii) Cov (™ e®) ) =0 foru> R, R < oo and p=1,...,d.

Define:

R
=1 42 Z P, with n{?) .= (Cov(el(-p)7 egi)u), u < R,

u=1

with m(f),o < u < R, constant for all 0 < i <n — u.

Impose n, > 0 for all p.
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Assumption 4

There exist differentiable c.d.f.s F),, p=1,...,d, such that observations satisfy
17 = (i/ny) , 0 <i <mnp,p€{l,...,d}, where F}, € C*®([0,1],

[0, 1}),p =1,...,d, with a being the smoothness exponent in Assumption 2
for R < oo.

Definition 1

In the asymptotic framework with n/n, — vp, where 0 < v, < co,p =1,...,d,

for n — 0o, define the continuous-time noise level matrix

H, = diag ((WPVP(Fpil)/(S))l/Q)1§p§d' (3)
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Local Method of Moments Estimation

e Estimation using LMM approach by Bibinger et al. (2014).

® Partition interval [0, 1] into blocks [khn, (k + 1)hn],k=0,..., k' — 1
with h, — 0 as n — oo.

® Approximate original process by process with block-wise constant
covariance matrices ¥jp,, and noise levels Hy.

= Estimation error can be asymptotically neglected for sufficient
smoothness of ¥; and F}, and block sizes h,, shrinking sufficiently fast.

e Bibinger et al. (2014) propose integrated covariance matrix estimator in
simplified setting.

= Here: estimate spot covariance matrix in generalized setting.
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® Local spectral statistics:

"p

1 ® _y® H2) + 4
Sjk = mjh, Z(Yip —Yi_pl)‘i’jk(#) )
1<p<d

i=1

V2hy . .. . _ .
(I)]'k(t) = = sin (jﬂ'hnl (t — khn))l[khn,(k+1)hn)(t)7] >1.

® Can show that
Cov(Sjk) = (Skn, + 757k, “HE)(1 4 0(1)),

where Hj has entries

(HZ)(W) _ n;lnp(Fgl)’(khn) 7

= Estimate Sy, by SjrSjy — 725%h, *Hp |
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An Initial Spot Covariance Matrix Estimator

® Average across frequencies j = 1,...,JE and adjacent blocks:
Us.n Jp
vee (S975) = Usin = Lo + )70 30 (D)7 3 vee (S35
k=L n j=1
— 7 ha " HE)

where L, = max{[sh;'| — K,,0},
Us,n = min{|sh;'] + Kn, [hn'] — 1}

e Hl isa \/n-consistent estimator of H} with diagonal element

(I:IZ)<W) _ % Z (tgp) _ tgzi)l)27
kh <P <(k+1)hn

with 7, being long-run noise variance estimator.
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LMM Spot Covariance Matrix Estimator

® Equal weights for frequencies j = 1,...,J% in general not optimal.

® Increase efficiency: obtain pre-estimated spot covariance matrices using
vec (3},,%) and derive estimated optimal weight matrices WW;.
= LMM spot covariance matrix estimator:

Usin Jn

vec (23) == (Us,n - Ls,n + 1)71 Z Z Wj (I:IZ’ izzi)

k=Ls n j=1

X vec (sjks;k - w2j2h;2ﬂ2) .
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® Optimal weights proportional to local Fisher info matrices:

Tn

W; (H}, S, ) = ( > (Skn, + w2u2h;2H2)*®2)

u=1

—1

X (Skny, + 72520, 2 HE) 22
= I; ' L,
with
L = (Skn, +7°5%h " HE) ™,
and I, = Z;.]’:‘l L.
e Note: 3, symmetric, but not necessarily positive semi-definite.

= E.g., project on space of positive semi-definite matrices.
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Pointwise Central Limit Theorem

Theorem 1

Assume a setup with observations of type (2), a signal (1) and validity of
Assumptions 1-4.

Then, for hn, = k1 log (n)n~Y2, K, = ron’(log (n)) ! with constants k1, kg
and 0 < B < a(2a + 1) ", for J, — oo and n/ny, — v, with
O0<vp<oo,p=1,...,d, asn — oo, S, satisfies:

d— (st

n??vee (£, - 3,) Y N(02(z @ T + 5 @ ¥), 2),s € 0.1],

1/2

where Sy = H(H 'SH™')"'"H with noise level H from (3) and

Z =COV(vec(ZZ")) for Z ~ N(0, Eq) being a standard normally distributed

random vector.
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Feasible Central Limit Theorem

Corollary 1

Under the assumptions of Theorem 1, 3, satisfies

(Usn = Lo + 1) (V2) " vee (8 - £.) 4 N(0,2), s € [0,1],

Us,n Jn -1
where  VI=(Usp—Lem+1)"" Y (lek) :

k=Lgs n
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Spot Correlations and Betas

e Spot correlation estimator: pP? = 2?‘”/ P $aa),

e Spot beta estimator: B? = SS’”/E&”’).

® Delta method yields:
182 vec (ﬁ?’” — pgp(”) P N(O,AV,,,S), s€0,1],
1%/ vec (BépQ) — ngq)) = N(O,AVB,S), s €0,1].

= Analogously for feasible CLTs.
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Estimating Noise Autocovariances

® Estimation of long-run noise variance n,,p = 1,...,d, only requires
component-wise autocovariance estimates.

= Restrict analysis to d = 1: n + 1 observations of
Yi=Xi, +€,i=0,...,n.

® Fix R > 0 and successively estimate autocovariances by

n R n—r

fir = (2n) ™" Z (AZ-Y)2 +nt Z Z AYA LY
i=1 r=1 i=1

M = Tr1 = (2n)71 Z (Aiy)g +nt Z i AYAilY,
i=1 u=1 i=1

0<r<R-1.
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® The variance of 7,0 < 7 < R, is consistently estimated by
Va\r(ﬁr) = ’fl_l (VTZI + VTn + 2027+1) s
with
r+1

:‘L,T+1 _ (FO 4= ZFOO+Z Z (Fgu +2 Zruu ))

u=0vu'=1

and V" = Cy,., where f‘grl, q,m,7 €{0,..., R} is the fourth sample
moment of A;Y.

® |n particular, for r = R, @r(ﬁR) =n"'VZ.
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Theorem 2
Under Assumption 3 and ]HOQ mu =0forallu>Q, Q=R+ 1, we have

T5(Y) = 4/n/VE i —= N(0,1).

Suitable strategy for selecting R:
e Compute T (Y) for @ < Q=R+1 “large".
® Incorporate all autocovariances until first hypothesis of zero

autocovariance cannot be rejected.

= Using R, compute long-run noise variance estimate as

R
A= +2 M
u=1
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4. Empirical Results
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Data

® Mid-quotes and transaction prices for 30 most liquid NASDAQ100
constituents and PowerShares QQQ ETF.

® Sample period from May 2010 to April 2014.

® Data sampled from LOBSTER database:
https://lobster.wiwi.hu-berlin.de/

e Handle (few) errors in the trade and mid-quote samples using cleaning
procedures by Barndorff-Nielsen et al. (2009).

® Preliminary analysis: huge share of zero returns in quote data.

= Focus on quote revisions to reduce computational burden.


https://lobster.wiwi.hu-berlin.de/
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Choice of Inputs and Implementation

® Theory requires:
hn = O(log (n)n"'/?), J, = O(log (n)),
JE fixed at a value not “too large” (e.g., JE =5) and K, = O(n1/4—s)
for e > 0 “small”.

® Introduce proportionality parameters:
hn = 6 log (n)n71/2, Jn = [0slog(n)] and K,, = [OKnl/‘l*é], where
On,05,0K > 0.

= Based on simulations: 6, = 0.2, 0; =8, 0x = 0.4, JE = 5.

® Estimate
e 30 x 30 spot covariance matrices for NASDAQ100 constituents:
spot covariances and correlations, volatilities.
e 31 x 31 spot covariance matrices including QQQ ETF: spot betas
with QQQ as market proxy.
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Summary Statistics of Input Values

Input q0.05 Mean q0.95 Std.
(h;l] 18.000 22.516 29.000 3.922
Jn 48.000 53.532 60.000 3.672

Ky 2.000 2.435 3.000 0.300
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Cross-Sectional Deciles of Avg. Covariance and
Correlation

L Doy . oo : 0.7 s S [ S

Avg. Correlation Deciles
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10:00 11:00 12:00 13:00 14:00 15:00 16:01 10:00 11:00 12:00 13:00 14:00 1500 16:00
Time of Day Time of Day
(a) Spot Covariances (b) Spot Correlations

Spot estimates are averaged across days. Then, cross-sectional sample deciles

of across-day averages are computed.
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Cross-Sectional Deciles of Avg. Beta and Volatility

QL0 ot

Avg. Volatility Deciles

0
10:00 11:00 12:00 13:00 1400  15:00  16:0 10:00 11:00 12:00 13:00 14:00 15:00  16:00
Time of Day Time of Day
(a) Spot Betas (b) Spot Volatilities

Spot estimates are averaged across days. Then, cross-sectional sample deciles

of across-day averages are computed.
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Cross-Sectional Deciles of Std. Dev. of Covariance
and Correlation

025 vt

QAB75[ - |

QZEE o

Standard Deviation Deciles
Standard Deviation Deciles

0 0
10:00 11:00 12:00 13:00 14:00 15:00 1600 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Time of Day Time of Day
(a) Spot Covariances (b) Spot Correlations

Sample standard deviations of spot estimates are computed across days. Then,
cross-sectional sample deciles of across-day standard deviations are computed.



Standard Deviation Deciles
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Cross-Sectional Deciles of Std. Dev. of Beta and
Volatility
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Time of Day Time of Day

(a) Spot Betas (b) Spot Volatilities
Sample standard deviations of spot estimates are computed across days. Then,

cross-sectional sample deciles of across-day standard deviations are computed.



Median Normalized Variation

4. Empirical Results
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Cross-Sectional Medians of Intraday Variation Proxy

for Covariance and Correlation
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4. Empirical Results
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Cross-Sectional Medians of Intraday Variation Proxy

for Beta and Volatility
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Event I: “Flash Crash” (05/06/10)

(1) Protests in Athens trigger Euro down movement vs. Yen.
U.S. fund managers short-sell E-Mini contracts in vast amounts.

(2) E-Mini market makers cut back trading.
(3) NASDAQ stops order routing to ARCA.

(4) Rumors suggesting that decline occurred due to “fat-finger” error, and
not bad news.

(5) NASDAQ resumes routing to ARCA.
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05/06/10: QQQ Transaction Prices
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Covariance Deciles
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05/06/10: Cross-Sectional Deciles of Covariance
and Correlation

Correlation Deciles
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(a) Spot Covariances (b) Spot Correlations



Beta Deciles

4. Empirical Results

350

0 0
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52 | 58

05/06/10: Cross-Sectional Deciles of Beta and
Volatility

Volatility Deciles

13:00 14:00 15:00 16:00

Time of Day Time of Day

(a) Spot Betas (b) Spot Volatilities
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Event Il: “Twitter Flash Crash” (04/23/13)

(1) Fake tweet from the account of AP stating “Breaking: Two Explosions in
the White House and Barack Obama is injured”.

(2) Official denial by AP.

(3) AP’s twitter account suspended.
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04/23/13: QQQ Transaction Prices
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04/23/13: Cross-Sectional Deciles of Covariance
and Correlation
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04/23/13: Cross-Sectional Deciles of Beta and
Volatility
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Conclusions

® Introduce spot covariance matrix estimator relying on LMM approach by
Bibinger et al. (2014).

® Extend LMM to allow for autocorrelated noise and provide method for
choosing order of dependence.

® Derive stable CLT along with feasible version.
® Simulation study demonstrates how to implement estimator.

® Emprical evidence based on NASDAQ100 stocks:
® Spot covariances, correlations & volatilities exhibit considerable
intraday seasonality.
e Distinct intraday changes of (co-)volatilities in periods of extreme
market movements.
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