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Motivation

Cyber risks pose a large threat to businesses and governments

Estimated global loss per year ≈ 400 billion USD1

Dimensions of cyber risk

I Causes: Human errors; technical failures; insider/hacker attacks
I Damage: Lost, stolen or corrupted data; damage to firms’ or

governments’ operations, property and reputation; severe disruption of
critical infrastructure; physical damage, injury to people and fatalities

I Risk assessment: Analysis of critical scenarios; stochastic cyber model
and statistical evaluation

I Mitigation: Modify system technology; develop emergency plan;
insurance solutions

1
Center for Strategic & International Studies (2014)/ Llloyds of London CEO Inga Beale (2015)
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Motivation (2)

Actuarial challenges of cyber risk

I Data:
Data is not available in the required amount or in the desired
granularity

I Non-stationarity:
Technology and cyber threats are evolving fast

I Accumulation risks:
The typical insurance independence assumption does not hold, but
there is no simple geographical distinction between dependent groups
as, for example, in the case of NatCat
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Motivation (3)

We consider the special case of infectious cyber threats,

e.g., viruses and worms

Example:

WannaCry infected more than 230.000 computers in 150 countries in May
2017

Our main contribution

A mathematical model for infectious cyber threats and cyber insurance

I Stochastic model based on IPS and marked point processes
I We suggest higher-order mean-field approximations
I Insurance application: premiums can be calculated
I Systemic risk: we analyze the influence of the network structure

Stefan Weber, WU Wien 2017
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Model Idea

Infection spread process:

I Agents are connected in a network
I Infections spread from neighbor to neighbor and are cured

independently
→ Continuous time Markov process, i.e., SIS/contact process

Insurance claims processes:

I Infected nodes are vulnerable to cyber attacks that occur at random
times and generate losses of random size

→ Marked point process

A (re-)insurance company covers a function of the nodes’ losses

Stefan Weber, WU Wien 2017
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Network of Agents

N interconnected agents, labeled 1, 2, . . . ,N

(e.g., corporations, systems of computers, or single devices)

Connections: Network without self-loops, represented by a (symmetric)
adjacency matrix A ∈ {0, 1}N×N (aii = 0)

I aij = 1: connection between node i and j ,
I aij = 0: i and j are not directly connected

Example:

A =



0 1 1 0 1 0 0
1 0 1 0 1 0 0
1 1 0 1 0 1 1
0 0 1 0 1 0 0
1 1 0 1 0 1 1
0 0 1 0 1 0 1
0 0 1 0 1 1 0


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Spread Process (1)

SIS-model (Susceptible-Infected-Susceptible)

At each point in time, node i can be in one of two states Xi (t) ∈ {0, 1}:
I Xi (t) = 1: node i is infected = vulnerable to cyber attacks,
I Xi (t) = 0: node i is susceptible at time t

Each node changes its state at a random time with a rate that may depend
on the states of other nodes

Key parameters:

I β > 0 (infection rate),
I δ > 0 (curing rate)

Nodes are infected by their infected neighbors, and
infected nodes are cured independently from other nodes:

I Xi : 0→ 1; β
∑N

j=1 aijXj(t) (Infection),
I Xi : 1→ 0; δ (Curing)

1

32

δ

ββ
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Spread Process (2)

Definition

The spread process X is a Feller process on the configuration space E = {0, 1}N
defined by the generator G : C (E )→ R with

Gf (x) =
N∑
i=1

β(1− xi )
N∑
j=1

aijxj + xiδ

(f (x i )− f (x)), x ∈ E , f ∈ C (E ),

where x ij = xj for i 6= j and x ii = 1− xi

Stefan Weber, WU Wien 2017
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Claims Process

Mechanism

I The spread process X does not directly cause any damage
I The system as a whole is subject to randomly occurring cyber attacks
I A node is affected by a cyber attack at time t if and only if it is infected =

vulnerable at time t

Mathematical Model

I Number of attacks: counting process M = (M(t))t≥0

F ... with stochastic intensity (λ(t))t≥0

F ... independent of X

I Loss sizes: nonnegative process L = (L(t))t≥0

F ... independent of X
F ... with L(t) = (L1(t), . . . , LN(t))>

F Losses of an attack at time t are captured by:

L(t) ◦ X (t) = (L1(t)X1(t), . . . , LN(t)XN(t))>

Stefan Weber, WU Wien 2017
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Expected Aggregate Losses

For any time t, the insurance contract is characterized by a function
f (·; ·) : R+ × RN

+ → R+:

The insurance company covers f (t; L(t) ◦ X (t)),
if a loss event occurs at time t

→ The expected aggregate losses of the insurance company over time window
[0,T ] are given by:

E

[∫ T

0

f (t; L(t) ◦ X (t))dM(t)

]
= E

[∫ T

0

f (t; L(t) ◦ X (t))λ(t)dt

]
(1)

Question: Explicit calculation?

Stefan Weber, WU Wien 2017
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Example: Proportional Insurance

Let f describe a proportional insurance contract, i.e.,

f (t; L(t) ◦ X (t)) =
N∑
i=1

αiLi (t)Xi (t)

In this case, eq. (1) becomes

E

[∫ T

0

f (t; L(t) ◦ X (t))dM(t)

]
= E

[∫ T

0

f (t; L(t) ◦ X (t))λ(t)dt

]

=

∫ T

0

N∑
i=1

αi · E[Xi (t)] · E[Li (t)λ(t)] dt

→ For linear claim functions, only the first moments E[Xi (t)] of the spread

process are needed in order to calculate the expected aggregate losses

Stefan Weber, WU Wien 2017
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General Claims

Non-linear claim functions f can be uniformly approximated by
polynomials of a chosen degree np in probability

Basic idea:

I By the theorem of Stone-Weierstraß, any continuous f can be
uniformly approximated by polynomials on any compact set

I The compact set is chosen such that the probability of the argument
being outside the compact is sufficiently small

This leads to expressions of the following form:∫ T
0 E

(
1[0,u](Λ(L)) · λ(t) ·

∑N
i=1

[
a0 + a1

N∑
i1=1

bi1Li1E[Xi1
] + a2

N∑
i1=1

N∑
i2=1

bi1 bi2Li1Li2E[Xi1
Xi2

]

+ . . . + anp
N∑

i1=1

N∑
i2=1
· · ·

N∑
inp =1

bi1 bi2 · · · binp · Li1Li2 · · · Linp · E[Xi1
Xi2
· · · Xinp

]

 dt

→ Only moments up to order np of the spread process (i.e., E[Xi1 (t) · · ·Xik (t)]
for ij ∈ {1, . . . ,N} and k ≤ np) are required for the computation of the
expected aggregate losses

Stefan Weber, WU Wien 2017
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General Claims (2)

For both linear and non-linear claim functions:

Key issue when computing the expected aggregate losses:

I Calculate moments of X
I Due to Kolmogorov’s equations, these are characterized by ODE

systems

Challenge:

I Direct calculation of moments is hardly tractable for realistic network
sizes due to very large ODE systems

Suggestion

Mean-field approximation of the moments of the spread process

Stefan Weber, WU Wien 2017
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First Order Mean-Field Approximation (1)

ODEs of time-derivatives of first moments E[Xi (t)]:

dE[Xi (t)]

dt
= −δE[Xi (t)] + β

N∑
j=1

aijE[Xj (t)] − β
N∑
j=1

aijE[Xi (t)Xj (t)], i = 1, 2, . . . ,N

Problem: Joint second moments keep the system from being closed

Ansatz:

Incorrectly factorize the second moments

E[Xi (t)Xj(t)] ≈ F (E[Xi (t)]) · F (E[Xj(t)])

with a suitably chosen function F : [0, 1]→ [0, 1], e.g., F (x) = x

Stefan Weber, WU Wien 2017
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First Order Mean-Field Approximation (2)

Definition

The first order mean-field approximation z
(1)
i corresponding to the mean-field function F

is defined as the solution to the following system of ODEs:

dz
(1)
i (t)

dt
= −δz (1)

i (t) + β

N∑
j=1

aijz
(1)
i (t)− β

N∑
j=1

aijF (z
(1)
i (t)) · F (z

(1)
j (t)),

for i = 1, . . . ,N

The choice of F (x) = x leads to an upper bound, the choice of F (x) =
√
x to a

lower bound approximation of the exact moment

For certain parameter choices, the approximation error decreases exponentially in
time

Stefan Weber, WU Wien 2017
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First Order Mean-Field Approximation (3)

The accuracy of first order mean-field approximations is typically low, if
interaction is sufficiently strong

Example:

We consider a regular network with N = 7 nodes and degree d = 4

A :=



0 1 0 0 1 1 1
1 0 1 1 0 0 1
0 1 0 1 1 1 0
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 0 1 0 1 0 1
1 1 0 1 0 1 0


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n-th Order Mean-Field Approximation (1)

In order to achieve higher accuracy, we extend this idea and construct mean-field
approximations of order n: (z

(n)
I )I⊆{1,2,...,N}, |I |≤n

This increases the complexity of the approximation

Methodology

I Define the product XI :=
∏

i∈I Xi for I ⊆ {1, 2, . . . ,N}.
Since the components of X are commutative and idempotent, we may
neglect the order of the indices or powers of its components

I As a consequence of Kolmogorov’s forward equations, the dynamics of the
moments (E [XI ])I⊆{1,2,...,N} are described by a coupled system of 2N − 1
ODEs

I Approximation
Focus only on (E [XI ])I⊆{1,2,...,N}, |I |≤n

1 |I | < n:

ODE for d
dt
z

(n)
I is exact ODE for d

dt
E [XI ]

2 |I | = n:

ODE for d
dt
z

(n)
I is approximation obtained by (incorrectly) factorizing

moments of order n + 1

Stefan Weber, WU Wien 2017
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n-th Order Mean-Field Approximation (2)

|I | = n

Choose the following two objects:

1 a mean-field function F : [0, 1]→ [0, 1] and
2 a partition scheme (I1, I2) such that for j /∈ I we have

I ∪ {j} = I1(I , j) ∪ I2(I , j) with non-empty I1(j) = I1(I , j), I2(j) = I2(I , j)

This leads to the following approximation:

d

dt
E[XI ] = −nδE[XI ] + β

∑
i∈I

N∑
j=1

aijE[XI\{i}∪{j}] − β
∑
i∈I

N∑
j=1

aijE[XI∪{j}]

≈ −nδE[XI ] + β
∑
i∈I

N∑
j=1

aijE
[
XI\{i}∪{j}

]
− β

∑
i∈I

N∑
j=1,j∈I

aijE[XI ]

−β
∑
i∈I

N∑
j=1,j 6∈I

aij · F
(
E[XI1(j)]

)
· F
(
E[XI2(j)]

)
.

Stefan Weber, WU Wien 2017
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n-th Order Mean-Field Approximation (3)

|I | < n

In the approximate ODE system, the ODE for d
dt
z

(n)
I is the exact ODE for d

dt
E [XI ]:

d

dt
E[XI ] = −nδE[XI ] + β

∑
i∈I

N∑
j=1

aijE
[
XI\{i}∪{j}

]
− β

∑
i∈I

N∑
j=1

aijE
[
XI∪{j}

]
−→ n-th order approximation with

|I | = n : ż(n)
I =−

nδ+ β
∑∑∑
i∈I

N∑∑∑
j=1,j∈I

aij

 z(n)
I + β

∑∑∑
i∈I

N∑∑∑
j=1

aij z
(n)
I\{i}∪{j}

− β
∑∑∑
i∈I

N∑∑∑
j=1,j 6∈I

aijF
(
z(n)
I1(j)

)
· F
(
z(n)
I2(j)

)

|I | < n : ż(n)
I =− nδz(n)

I + β
∑∑∑
i∈I

N∑∑∑
j=1

aij z
(n)
I\{i}∪{j} − β

∑∑∑
i∈I

N∑∑∑
j=1

aij z
(n)
I∪{j}

Stefan Weber, WU Wien 2017
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n-th Order Mean-Field Approximation (4)
The n-th order mean-field approximation yields approximations of all moments of

X up to order n:
I n-th moments enable us to compute expected aggregate losses for non-linear

claim functions
I The n-th order approximation also yields improved approximations of the first

order moments, i.e., infection probabilities of each node

Example: Aggregate infection probability of initially healthy nodes in the n-th order
mean-field approximation for n = 1, 2, 3, 4, F (x) = x , β = 0.5 and δ = 1.817
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Network Scenarios

We consider three different stylized network scenarios

Homogeneous Clustered Star-shaped

The number of nodes and the degree of each node are equal in all scenarios
(N = 50, d = 7)

→ We are comparing the impact of the network topology

Stefan Weber, WU Wien 2017
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Simulation Setup
We initially infect 20% of the nodes in the networks:

For the spread process, we choose: β = 0.5, δ = 3.51

Cyber attacks occur at the jumps of a homogeneous Poisson process with rate
λ = 3

Losses at each vulnerable node are exponentially distributed with mean µ = 2

Approximation of expected aggregate losses of the insurance company in [0, 3] on

the basis of
I mean-field approximations for the moments of the spread process,
I Monte-Carlo simulations of the claims processes

Stefan Weber, WU Wien 2017
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Example: Aggregate Losses

Total loss coverage, i.e., the treaty function f (t, ·) is given by

f (t, L(t) ◦ X (t)) :=
N∑
i=1

Li (t)Xi (t)

→ Estimated expected aggregate losses:

Losses: Total coverage Homogeneous Clustered Star
First order MFA 96.4671 97.6170 96.5425
Second order MFA 51.4911 39.7776 39.4127
Third order MFA 77.8349 70.6588 68.0767
Fourth order MFA 68.0676 61.3693 59.9005

Stefan Weber, WU Wien 2017
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Example: Excess of Loss per Risk – XL

XL, i.e., the treaty function f (t, ·) is given by

f (t, L(t) ◦ X (t)) :=
N∑
i=1

min{Li (t), 2} · Xi (t)

→ Estimated expected insurance losses:

Losses: XL Homogeneous Clustered Star
First order MFA 60.9795 61.7036 61.0247
Second order MFA 32.5475 25.1401 24.9105
Third order MFA 49.2010 44.6618 43.0300
Fourth order MFA 43.0265 38.7894 37.8615

Stefan Weber, WU Wien 2017
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Conclusion

Model for pricing cyber insurance

Cyber losses that are triggered by two underlying risk processes:

I a cyber infection ↔ interacting Markov chain
I cyber attacks on vulnerable sites ↔ marked point process

Due to the large dimension of the system, the computation of expected
aggregate insurance losses and pricing of cyber contracts is challenging:

I polynomial approximation of non-linear claim functions
I n-th order mean-field approximation of moments of the spread process

Numerical case studies demonstrate:

I Significant impact of network topology
I Higher order mean-field approximations improve accuracy

Stefan Weber, WU Wien 2017
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Thank you for your attention!

Stefan Weber, WU Wien 2017
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