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Abstract

Conditional forecasts of risk measures play an important role in internal risk management of financial

institutions as well as in regulatory capital calculations. In order to assess forecasting performance of a risk

measurement procedure, risk measure forecasts are compared to the realized financial losses over a period of

time and a statistical test of correctness of the procedure is conducted. This process is known as backtesting.

Such traditional backtests are concerned with assessing some optimality property of a set of risk measure

estimates. However, they are not suited to compare different risk estimation procedures. We investigate

the proposal of comparative backtests, which are better suited for method comparisons on the basis of

forecasting accuracy, but necessitate an elicitable risk measure. We argue that supplementing traditional

backtests with comparative backtests will enhance the existing trading book regulatory framework for banks

by providing the correct incentive for accuracy of risk measure forecasts. In addition, the comparative

backtesting framework could be used by banks internally as well as by researchers to guide selection of

forecasting methods. The discussion focuses on three risk measures, Value-at-Risk, expected shortfall and

expectiles, and is supported by a simulation study and data analysis.

Keywords: forecasting, backtesting, elicitability, risk measurement procedure, Value-at-Risk, expected

shortfall, expectiles

1 Introduction

Financial institutions rely on conditional forecasts of risk measures for the purposes of internal risk management

as well as regulatory capital calculations. The two ingredients at the heart of risk measurement are the choice

of a suitable risk measure and of a forecasting method, with the forecasting method being typically preceded by

the choice of a model and estimation method for the (conditional) loss distribution of the underlying portfolio

of risky assets. Traditionally, the choice of a risk measure was based on theoretical considerations linked to

practical implications. Emmer et al. [2015] give a recent account of the pros and cons of popular risk measures

with an attempt to determine the best risk measure in practice. On the other hand, Cont et al. [2010] highlight

the need to consider the entire “risk measurement procedure”, which includes not just the choice of a risk

measure but also how it is then estimated from the data. In particular, the notion of robustness as sensitivity to

outliers is used to compare several risk measurement procedures. In the risk management context, this should

also be balanced with robustness to deviations from model assumptions as well as responsiveness or sensitivity
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to tail events. Davis [2016] introduces a notion of consistency of risk measures and how this is relevant in the

context of financial risk management.

The performance of a (trading book) risk measurement procedure can be monitored over time via a com-

parison of realized losses with risk measure forecasts, a process known as backtesting; see, e.g., Christoffersen

[2003] and McNeil et al. [2005]. Based on results of a backtest, the risk measurement procedure is deemed as

adequate or not. Traditional backtests perform a statistical test for the null hypothesis:

H0 : “The risk measurement procedure is correct.”

If the null hypothesis is not rejected, the risk measurement procedure is considered as adequate. For Value-

at-Risk (VaR), the Bank for International Settlements [2013, p. 103–108] has devised a three-zone approach

based on a binomial test for the number of exceedances over the VaR threshold. Traditional backtests are

concerned with assessing an optimality property of a set of risk measure estimates; for details see Section 2.2.

They are not suited to compare different risk estimation procedures, and they may be insensitive with respect

to increasing information sets; examples of this fact are provided in Holzmann and Eulert [2014], Davis [2016].

Moreover, traditional backtests may not provide banks with the right incentive of developing procedures which

aim for accuracy of risk measure forecasts; for an illustration, see Section A of the online supplement [Nolde

and Ziegel, 2016] (abbreviated ’OS’ in the sequel). In this simulation-based example, we show how optimization

with respect to the test statistic of a traditional backtest may lead to unreasonable ordering of forecasting

procedures.

In view of the anticipated revised standardized approach, which “should provide a credible fall-back in the

event that a bank’s internal market risk model is deemed inadequate” [Bank for International Settlements, 2013,

p. 5–6], Fissler et al. [2016] have recently proposed to replace traditional backtests by comparative backtests

based on strictly consistent scoring functions. Comparative backtests also naturally lead to a three-zone ap-

proach, which will be described in detail in Section 2.3. Furthermore, they allow for conservative tests and are

sensitive with respect to increasing information sets. Roughly, this means that a risk measurement procedure

that correctly incorporates more risk factors will always be preferred over a simpler procedure that uses less

information. However, comparative backtests necessitate an elicitable risk measure. Examples of elicitable risk

measures are VaR and expectiles, while expected shortfall (ES) is not elicitable. However, ES turns out to

be jointly elicitable with VaR, which allows for comparative backtests also for ES; for details and a literature

review on elicitable risk measures, see Section 2.1.

The paper raises the point of distinguishing between traditional backtesting (current regulatory practice)

and comparative backtesting. We highlight the deficiency of the former in giving financial institutions the right

incentive for forecast accuracy, and argue that the existing regulatory framework can be enhanced by inclusion of

comparative backtesting. On the methodological side, we show that traditional backtesting can be formalized in

the form of conditional calibration tests, which provide a unifying framework for many of the existing backtests

of popular risk measures. This contributes to our understanding of those often ad hoc procedures and allows

us to view them as part of a bigger picture. The paper then provides a detailed investigation of the proposal of

comparative backtests.

In our discussion of traditional and comparative backtests, we are focussing on the following three risk

measures: VaR, a popular risk measure that is elicitable; expectiles, the only coherent and elicitable risk

measures; and ES, a coherent and comonotonically additive risk measure, which is jointly elicitable together

with VaR, and which is the new standard measure in banking regulation. VaR at level α ∈ (0, 1), denoted
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VaRα, of a random variable X is defined as

VaRα(X) == inf{x | FX(x) ≥ α},

where FX is the cumulative distribution function of X. From the statistical perspective, VaRα is simply the

α-quantile of the underlying distribution, assuming the quantile is single-valued. Positive values of X are

interpreted as losses in this manuscript, hence we are interested in VaRα for values of α close to one. The Bank

for International Settlements [2013, p.103–108] specifically requests VaRα values for α = 0.99, which we refer

to as the standard Basel VaR level. ES of an integrable random variable X at level ν ∈ (0, 1) is given by

ESν(X) =
1

1− ν

∫ 1

ν

VaRα(X)dα.

The Bank for International Settlements [2014] proposes ν = 0.975 as the standard Basel ES level, as ES0.975

should yield a similar magnitude of risk as VaR0.99 under the standard normal distribution. As introduced by

Newey and Powell [1987], the τ -expectile eτ (X) of X with finite mean is the unique solution x = eτ (X) to the

equation

τ

∫ ∞
x

(y − x) dFX(y) = (1− τ)

∫ x

−∞
(x− y) dFX(y). (1.1)

As shown in Bellini et al. [2014], Ziegel [2016], τ -expectiles are elicitable coherent risk measures for τ ∈ [1/2, 1).

Expectiles generalize the expectation just as quantiles generalize the median. Considering the level τ = 0.99855

leads to a comparable magnitude of risk as VaR0.99 and ES0.975 under the standard normal distribution; see

Bellini and Bernardino [2017].

The paper is organized as follows. Section 2 contains a theoretical discussion of backtesting risk measures. In

Section 2.1 we define the notion of elicitability, introduce identifiability and review characterizations of consistent

scoring functions for VaR, expectiles and (VaR, ES). In Section 2.2 we define what we mean by a calibrated

risk measurement procedure and describe how this concept is related to the notion of calibration of Davis [2016]

and to traditional backtests in general. We move on to comparative backtests in Section 2.3, where we also

explain the comparative three-zone approach. Section 2.4 discusses the choice of the scoring function. Section 3

contains numerical studies of the proposed backtesting methodologies. We first review some of the existing

approaches to forecasting risk measures in Section 3.1. A simulation study is described in Section 3.2, while an

application to the returns on the NASDAQ Composite index is presented in Section 3.3. Section 4 concludes

the paper with a summary and a discussion of the findings, in particular, in relation to banking regulation.

Section B in the OS contains the necessary background material for computing and estimation of expectiles,

and gives a derivation of an extreme value-based estimator; some of the results here are of interest in their own

right. Technical results on the characterization of consistent scoring functions with positive-homogeneous score

differences are delegated to Section C of the OS. Finally, Section D of the OS reports results of a simulation

study, which investigates the performance of backtesting procedures in the setting where the out-of-sample size

is small.

2 Backtesting of risk measures

2.1 Preliminaries

A risk measure ρ is usually defined on some space of random variables. In this paper, we only consider risk

measures that are law-invariant, that is, two random variables X and Y with the same distribution L(X) = L(Y )



2 BACKTESTING OF RISK MEASURES 4

are assigned the same value of ρ. Therefore, we view a risk measure ρ as a map from some collection of probability

distributions P to the real line R. Then, the risk of X with distribution L(X) is ρ(L(X)). In some instances,

where no confusion can arise, we abuse notation and write ρ(X) instead of ρ(L(X)). Let Θ = (ρ1, . . . , ρk) be a

vector of k ≥ 1 risk measures.

Definition 1. A scoring function S : Rk × R→ R is called strictly consistent for Θ with respect to P if

E(S(Θ(L(X)), X)) < E(S(r,X)) (2.1)

for all r = (r1, . . . , rk) 6= Θ(L(X)) = (ρ1(L(X)), . . . , ρk(L(X))) and all X with distribution L(X) ∈ P. The

scoring function S is consistent if equality is allowed in (2.1). The vector of risk measures Θ is called elicitable

with respect to P if there exists a strictly consistent scoring function for it.

Elicitability is useful for model selection, estimation, generalized regression, forecast ranking, and, as we will

detail in this paper, allows for comparative backtesting. Elicitable functionals were already studied in the thesis

of Osband [1985], although the terminology was coined by Lambert et al. [2008]. A comprehensive literature

review on elicitability can be found in Gneiting [2011], where particular emphasis is on the case k = 1. Recent

advances on the case k ≥ 2 can be found in Frongillo and Kash [2015], Fissler and Ziegel [2016].

The question of elicitability of risk measures has recently received considerable attention. All available results

in the case k = 1 are based on the simple but powerful observation that a necessary requirement of elicitability

are convex level sets in a distributional sense [Osband, 1985]; see also Gneiting [2011, Theorem 6]. Weber [2006]

was the first to study risk measures with convex level sets. Bellini and Bignozzi [2015] used his results to study

elicitability for the broad class of monetary risk measures. Under weak regularity assumptions, they show that

elicitable monetary risk measures are so-called shortfall risk measures [Föllmer and Schied, 2002]. For more

specific classes of risk measures, such as coherent, convex or distortion risk measures, the same result can be

shown without any additional regularity assumptions [Ziegel, 2016, Delbaen et al., 2016, Kou and Peng, 2016,

Wang and Ziegel, 2015]. While expected shortfall is itself not elicitable, Fissler and Ziegel [2016] have shown

that the pair Θ = (VaRα,ESα) is elicitable; see also Acerbi and Szekely [2014].

The classes of (strictly) consistent scoring functions for VaRα, τ -expectiles and (VaRν ,ESν) have been

characterized. The following three propositions state sufficient conditions for (strict) consistency. Under mild

regularity assumptions given in the cited literature and up to equivalence, these conditions are also necessary.

Here, two scoring functions are called equivalent if their difference is a function of the realization x ∈ R only.

Let P0 denote the class of all Borel-probability distributions on R, and let P1 ⊆ P0 denote the class of all

distributions with finite mean.

Proposition 1 (Thomson [1979], Saerens [2000]). All scoring functions of the form

S(r, x) = (1− α− 1{x > r})G(r) + 1{x > r}G(x), (2.2)

where G is an increasing function on R, are consistent for VaRα, α ∈ (0, 1), with respect to P0. The scoring

functions of the above form are stricly consistent for VaRα with respect to P ′ ⊆ P0 if G is stricly increasing,

G(X) is integrable for all X with distribution in P ′, and all distributions in P ′ have a unique α-quantile.

Proposition 2 (Gneiting [2011]). All scoring functions of the form

S(r, x) = 1{x > r}(1− 2τ)(φ(r)− φ(x)− φ′(r)(r − x))− (1− τ)(φ(r)− φ′(r)(r − x)), (2.3)
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where φ is a convex function with subgradient φ′, are consistent for the τ -expectile, τ ∈ (0, 1), with respect to

P1. If φ is strictly convex, then the scoring functions of the above form are strictly consistent for the τ -expectile

relative to the class P ′ ⊆ P1 such that φ(X) is integrable for all X with distribution in P ′.

Proposition 3 (Fissler and Ziegel [2016]). All scoring functions of the form

S(r1, r2, x) = 1{x > r1}
(
−G1(r1)+G1(x)−G2(r2)(r1−x)

)
+(1−ν)

(
G1(r1)−G2(r2)(r2−r1)+G2(r2)

)
, (2.4)

where G1 is an increasing function, G′2 = G2 and G2 is increasing and concave, are consistent for (VaRν ,ESν),

ν ∈ (0, 1), with respect to P1. If G2 is strictly increasing and strictly concave, then the above scoring functions

are strictly consistent with respect to the subclass P ′ ⊆ P1 of the distributions P ∈ P1 with a unique ν-quantiles

and such that G1(X) is integrable when X has distribution P .

In risk management applications, it may be useful to allow only for strictly positive risk measure predictions.

As shown in Section 2.4, this opens up the possibility for attractive choices of homogeneous scoring functions in

the above propositions. If r ∈ (0,∞) is assumed in (2.2) or (2.3), then, for strict consistency, we only need that

G or φ are defined on (0,∞), and that they are strictly increasing or strictly convex on this domain, respectively.

In the case of (2.2) this can be checked by a fairly straightforward computation. For the claim concerning (2.3),

it is useful to consider the decomposition of the score difference derived in the proof of Gneiting [2011, Theorem

10]. Furthermore, it is sufficient to require integrability of G(X)1{X > 0} or φ(X)1{X > 0} for all X with

distribution in P ′. If we restrict to predictions with (r1, r2) ∈ R× (0,∞) in (2.4), G2 only has to be defined on

(0,∞) and has to be strictly increasing and strictly concave on this domain.

Closely connected to elicitability is the concept of identifiability. In fact, for k = 1, identifiability implies

elicitability under some additional assumptions; see Steinwart et al. [2014]. For k ≥ 2, it is currently unclear

whether such a general result holds; see Fissler and Ziegel [2016].

Definition 2. The vector of risk measures Θ is called identifiable with respect to P, if there is a function

V : Rk × R→ Rk such that

E(V (r,X)) = 0 ⇔ r = Θ(L(X)),

for all X with distribution L(X) ∈ P.

Identification functions are not uniquely defined. In fact, one can multiply any identification function for

a functional by a function depending only on the prediction r and taking values in the space of invertible

k × k-matrices to obtain another identification function for the same functional.

VaRα for α ∈ (0, 1) is identifiable with respect to the class PV ⊂ P0 of distributions with unique quantiles

with identification function

V (r, x) = 1− α− 1{x > r}, (2.5)

the τ -expectile for τ ∈ (0, 1) is identifiable with respect to P1 using the identification function

V (r, x) = |1− τ − 1{x > r}|(r − x), (2.6)

and (VaRν ,ESν) for the level ν ∈ (0, 1) has identification function

V (r1, r2, x) =

(
1− ν − 1{x > r1}

r1 − r2 − 1
1−ν1{x > r1}(r1 − x)

)
(2.7)

with respect to P1 ∩ PV .
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2.2 Calibration and traditional backtests

We fix the following notation. Suppose that Θ = (ρ1, . . . , ρk) is an identifiable functional with identification

function V with respect to P. Let {Xt}t∈N be a series of negated log-returns adapted to the filtration F =

{Ft}t∈N and {Rt}t∈N a sequence of predictions of Θ, which are Ft−1-measurable. Hence, the predictions are

based on the information about {Xt}t∈N available at time t − 1 represented by the sigma-algebra Ft−1. Let

L(Xt|Ft−1) denote the conditional law of Xt given the information Ft−1. We assume that all conditional

distributions L(Xt|Ft−1) and all unconditional distributions L(Xt) belong to P almost surely.

Inspired by the insightful paper of Davis [2016], we give the following definition.

Definition 3. The sequence of predictions {Rt}t∈N is calibrated for Θ on average if

E(V (Rt, Xt)) = 0 for all t ∈ N;

it is super-calibrated for Θ on average if E(V (Rt, Xt)) ≥ 0 component-wise, for all t ∈ N. The sequence of

predictions {Rt}t∈N is conditionally calibrated for Θ if

E(V (Rt, Xt)|Ft−1) = 0, almost surely, for all t ∈ N;

it is conditionally super-calibrated for Θ if E(V (Rt, Xt)|Ft−1) ≥ 0 component-wise, almost surely, for all t ∈ N.

Sub-calibration is defined analogously.

If one knows the conditional distributions L(Xt|Ft−1) and strives for the best possible prediction of Θ based

on the information in Ft−1, it is natural to use

Θ(L(Xt|Ft−1)) (2.8)

as a predictor, which we term the optimal F-conditional forecast for Θ. For the same reason, we call Θ(L(Xt))

the optimal unconditional forecast. Recall that we freely abuse notation in using Θ either as a functional defined

on a space of random variables or on a space of probability distributions.

Calibration characterizes optimal forecasts in the following sense. The optimal unconditional forecast is the

only deterministic forecast that is calibrated for Θ on average. However, there may be other forecasts that

are calibrated for Θ on average which are not deterministic and thus different from the optimal unconditional

forecast. Likewise, the optimal conditional forecast is the only F-predictable conditionally calibrated forecast

for Θ up to almost sure equivalence. It is clear that conditional calibration implies calibration on average by

the tower property of conditional expectations but the converse is generally false. The notions of calibration

introduced here are analogous to the notions of cross-calibration for probabilistic forecasts introduced in Strähl

and Ziegel [2017].

We have introduced the notions of super- and sub-calibration as they can often be related to over- or

under-estimation of the risk measure at hand. However, this depends on the specific identification function,

so some care must be taken. We give details for a correct interpretation for VaR, expectiles and (VaR,ES) in

Section 2.2.2.

For simplicity, we focus on one-step ahead predictions in this paper. Clearly, multi-step ahead predictions

are equally important. In some instances the same theory and concepts can be transferred from the former case

to the latter.
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Following Fissler et al. [2016], we call any backtest that considers a null hypothesis of the type “The risk

measurement procedure is correct” a traditional backtest. Traditional backtests are similar to goodness-of-fit

tests, that is, they allow to demonstrate that the risk measurement procedure under consideration is making

incorrect predictions, if the respective null hypothesis can be rejected. Despite the somewhat misleading ter-

minology that a traditional backtest is passed if the null hypothesis is not rejected, this does not mean that in

this case, one can be sure that the null hypothesis is correct (with a pre-specified small probability of error) as

this would necessitate that we control the power of the test explicitly. This can virtually never be done as the

alternative is too broad; see also Bank for International Settlements [2013, p. 103–105]. As argued by Fissler

et al. [2016], these issues may put the use of traditional backtest in regulatory frameworks in question. However,

they may be useful for model verification just as goodness-of-fit tests have their established role in statistics.

Testing the null hypothesis

H0 : The sequence of predictions {Rt}t∈N is calibrated for Θ on average. (2.9)

amounts to performing a traditional backtest. We describe here how tests for average calibration can be

constructed but we do not implement them because the stronger notion of conditional calibration appears

more adequate in a dynamic risk management context. In our data example in Section 3.3, for the more

flexible models, the null hypothesis of conditional calibration cannot be rejected which indicates that testing

for average calibration is superfluous. However, there may be situations where achieving average calibration is

already difficult and then the following tests may be useful.

Given a series of observations {Xt}t=1,...,n and forecasts {Rt}t=1,...,n, we define V n := (1/n)
∑n
t=1 V (Rt, Xt).

Let Σ̂n be a heteroscedasticity and autocorrelation consistent (HAC) estimator of the asymptotic covariance

matrix Σn = cov(
√
n V n) (see Andrews [1991]). Then, one can hope that

√
n Σ̂

−1/2
n V n is asymptotically

standard normal under suitable assumptions on the identification function and the data generating process. For

k = 1, sufficient mixing assumptions are detailed in Giacomini and White [2006, Theorem 4] but a multivariate

generalization of this result remains to be worked out. Giacomini and White [2006, Theorem 4] show that, for

k = 1, the test is consistent against the alternative |E
(
V n
)
| ≥ δ > 0 for all n sufficiently large, for any δ > 0.

Conditional calibration is a stronger notion than average calibration, and it appears more natural in a dy-

namic risk management context. A traditional backtest for conditional calibration considers the null hypothesis

H0 : The sequence of predictions {Rt}t∈N is conditionally calibrated for Θ. (2.10)

The requirement E(V (Rt, Xt)|Ft−1) = 0, almost surely, is equivalent to stating that E(h′tV (Rt, Xt)) = 0 for all

Ft−1-measurable Rk-valued functions ht. Following Giacomini and White [2006], we consider an F-predictable

sequence {ht}t∈N of q × k-matrices ht called test functions to construct a Wald-type test statistic:

T1 = n
( 1

n

n∑
t=1

htV (Rt, Xt)
)′

Ω̂−1n

( 1

n

n∑
t=1

htV (Rt, Xt)
)
, (2.11)

where

Ω̂n =
1

n

n∑
t=1

(htV (Rt, Xt))(htV (Rt, Xt))
′

is a consistent estimator of the variance of the q-vector htV (Rt, Xt). Ideally, the parameter q should be chosen

such that the rows of ht generate Ft−1. In applications, the choice of the test functions is motivated by the

principle that they should represent the most important information available at time point t − 1. In our
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simulation study, we obtained good results with q = 1 or q = 2; for further details see Section 3.2.2. We

call this type of traditional backtests conditional calibration tests. In cases where ht = 1, we refer to these

tests as simple conditional calibration tests. Theorem 1 in Giacomini and White [2006] states that, under the

null hypothesis (2.10), T1
d→ χ2

q as n → ∞, subject to certain assumptions on the data generating process

{Xt}t∈N and test function sequence {ht}t∈N. This asymptotic result justifies a level η test which rejects H0

when T1 > χ2
q,1−η, where χ2

q,1−η denotes the 1− η quantile of the χ2
q distribution. Giacomini and White [2006,

Theorem 3] provide conditions such that T1
d→ χ2

q as n → ∞ for multi-step ahead predictions, while Theorem

2 of Giacomini and White [2006] considers consistency of the test against global alternatives. The theorems of

Giacomini and White [2006] are formulated in terms of score differences and not identification functions but

their proofs solely rely on the martingale difference property of htV (Rt, Xt) and can thus be applied in our

context.

Commonly used backtests for VaRα and ESν are closely related to conditional calibration tests for specific

choices of the test functions ht. In fact, choosing ht = 1 in the case of VaRα, the conditional calibration test for

VaRα is closely related to the standard backtest for VaRα based on the number of VaR exceedances [Bank for

International Settlements, 2013, p.103–108]. In the case of ESν , the conditional calibration test for (VaRν ,ESν)

is related to the backtest for ESν of McNeil and Frey [2000] based on exceedance residuals. We give further

details in Examples 1, 2, and 3 below.

The notion of a calibrated risk measure (or statistic) of Davis [2016] is closely related to our notion of a

calibrated sequence of predictions. Davis [2016] considers which risk measures are calibrated for which classes

of models. That is, he attempts to characterize the largest class of data generating processes such that V n goes

to zero a.s. as n→∞ if {Rt}t∈N is a sequence of optimal conditional forecasts for the risk measure. It turns out

that for quantiles only minimal assumptions are necessary, whereas assumptions need to be stronger to work

with the mean, for example. The focus of our work is more statistical. Choosing F-predictable test functions

ht encoding the available information at time point t− 1, we investigate whether and how it is possible to test

in finite samples that the sequence {Rt}t∈N is conditionally calibrated.

2.2.1 One-sided calibration tests

In certain situations, it may be meaningful to assess super- or sub-calibration. For example, the standard

backtest for VaRα described in [Bank for International Settlements, 2013, p.103–108] is a test for conditional

super-calibration. This is due to the fact that over-estimation of VaRα is not a problem as far as the regulator

is concerned. Holding more capital then minimally required should always be allowed.

Suppose we wish to test the hypothesis of conditional super-calibration that E[V (Rt, Xt)|Ft−1] ≥ 0 component-

wise, for all t. That is, in the case of a k-variate risk measure, we are interested in H0 =
⋂k
i=1H0,i, where

H0,i : E[Vi(Rt, Xt)|Ft−1] ≥ 0 for all t, i = 1, . . . , k.

For each component i of the risk measure, let hi,t = (hi,t,1, . . . , hi,t,qi) be an Ft−1-measurable (qi × 1)-vector of

non-negative test functions. If hi,t,1, . . . , hi,t,qi generate Ft−1 then H0,i =
⋂qi
`=1H0,i,`, where

H0,i,` : E[Vi(Rt, Xt)hi,t,`] ≥ 0 for all t, i = 1, . . . , k, ` = 1, . . . , qi.
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We combine all of the test functions into a (q×k) matrix ht with q =
∑k
i=1 qi, which has the following structure:

ht =


h1,t 0 · · · 0

0 h2,t · · · 0
...

...
. . .

...

0 0 · · · hk,t

 .

Setting Zt = htV (Rt, Xt), the above hypothesis of conditional super-calibration can alternatively be expressed

as H0 =
⋂q
m=1H0,m with H0,m : E(Zt,m) ≥ 0 for all t. m = 1, . . . , q.

From the proof of Giacomini and White [2006, Theorems 1 and 3] it follows that under H0 given at (2.10),

T2 = (T2,1, . . . , T2,q)
′ =
√
n
−1

Ω̂−1/2n

n∑
t=1

Zt
d→ N (0, Iq), n→∞, (2.12)

where Iq denotes the (q × q) identity matrix. Hence, we can obtain an asymptotic test for H0,m with the

p-value given by πm = Φ
(√

n
−1

(Ω̂n)
−1/2
mm

∑n
t=1 Zt,m

)
, m = 1, . . . , q. That is, πm is the (asymptotic) probability

of obtaining a more extreme outcome than the one observed, assuming the null hypothesis H0,m is true. Let

π(1), . . . , π(q) be the ordered p-values. The classical Bonferroni multiple test procedure rejects the global null

hypothesis H0 if the smallest of the p-values π(1) < η/q, where η is the desired level of the (global) test. As

an alternative, following Hommel [1983], we obtain a level η test by rejecting the global hypothesis H0 if for at

least one m we have

π(m) ≤
m η

q Cq
, Cq =

q∑
r=1

1/r, m = 1, . . . , q. (2.13)

Hommel’s rejection rule has the advantage of allowing to detect situations with both small effects in many

components and with large effects in few components. Other testing procedures in this context could also be

used.

2.2.2 Examples

Example 1. Christoffersen [1998] calls a sequence of VaRα forecasts efficient with respect to F if

E[1{Xt > Rt}|Ft−1] = 1− α, almost surely, t = 1, 2, . . . .

This requirement is the same as the one of conditional calibration of {Rt}t∈N by (2.5). In fact, the dynamic

quantile test of Kuester et al. [2006] (see also Christoffersen [1998], Engle and Manganelli [2004]) has similarities

to a conditional calibration test. In analogy to their test, it is natural to consider test functions

ht = (1, V (rt−1, xt−1), · · · , V (rt−p, xt−p), rt)
′

for p ≥ 1. This is also in line with the suggestion in Giacomini and White [2006], who use ht = (1, V (rt−1, xt−1))′.

The standard backtest for VaRα specified in the Basel documents [Bank for International Settlements, 2013,

p.103–108] uses the test statistic

β =

n∑
t=1

1{Xt > Rt},

which is the number of exceedances over the estimated VaRα, denoted Rt, for time point t. Under the null

hypothesis (2.10) of conditionally calibrated VaRα-forecasts, for one-step ahead forecasts, β is a binomial random
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variable with parameters n and 1−α; see Rosenblatt [1952], Diebold et al. [1998], Davis [2016]. It is remarkable

that this result holds under essentially no assumptions on {Xt}t∈N or {Rt}t∈N. However, when moving away

from one-step ahead forecasts to multi-step ahead forecasts, things become more intricate and one has to resort

to general limit theorems such as presented above for testing if β has mean n(1 − α). This test is a test for

conditional super-calibration with ht = 1, because for VaRα, we obtain using (2.5)

T3 :=

n∑
t=1

htV (Rt, Xt) =

n∑
t=1

(1{Xt ≤ Rt} − α) =

n∑
t=1

(1{Xt > Rt} − (1− α)) = −(β − n(1− α)),

thus, testing the null hypothesis that β has mean less or equal to n(1− α) is equivalent to testing that T3 has

mean greater or equal to zero. This null hypothesis says that the conditional VaR predictions are at least as

large as the true conditional VaR. Assuming that it is an incentive of a bank to state VaR estimates that tend

to be lower than the true ones, a more prudent null hypothesis from the viewpoint of a regulator would be the

opposite one-sided hypothesis that the conditional VaR predictions are at most as large as the true conditional

VaR, that is, a test for conditional sub-calibration.

For one-step ahead predictions, alternatively to theory presented in this section, one can exploit the fact that

the exceedance indicators 1{Xt > Rt}, t = 1, . . . , n at the boundary of the null hypothesis, are independent

Bernoulli random variables with success probability 1 − α, which allows for an exact test rather than an

asymptotic one.

Example 2. We consider the vector of risk measures Θ(L(X)) = (ρ1(L(X)), ρ2(L(X))) = (VaRν(X),ESν(X))

for some ν ∈ (0, 1). Let r1,t and r2,t denote forecasts of VaRν(Xt) and ESν(Xt), respectively. Assuming

Xt = µt + σtZt, where µt and σt are Ft−1-measurable and the Zt’s form an independent and identically

distributed (i.i.d.) sequence of random variables with zero mean and variance one, for backtesting ES, McNeil

and Frey [2000] introduced the following test statistic based on exceedance residuals:

T4 =
1

#{t : Xt > r1,t}

n∑
t=1

Xt − r2,t
σt

1{Xt > r1,t}. (2.14)

It turns out that the ES backtest of McNeil and Frey [2000] is closely related to a conditional calibration test

as follows. For n reasonably large, we have that #{t : xt > r1,t}/n ≈ 1− ν. Therefore, for the test statistic T4

in (2.14), we obtain

T4 ≈
1

n

n∑
t=1

1

1− ν
xt − r2,t

σt
1{xt > r1,t} =

1

n

n∑
t=1

htV (r1,t, r2,t, xt)

with ht = σ−1t ((r2,t − r1,t)/(1 − ν), 1). Replacing σt by an estimate σ̂t is natural when considering the test of

McNeil and Frey [2000] as a conditional calibration test. The estimated volatility σ̂t is then simply a part of

the Ft−1-measurable test function sequence {ht}t∈N that supposedly encodes the relevant information of Ft−1.

Of course, this test is only reasonable if σt is estimated as part of the forecasting model with the information

at time point t− 1. The recently proposed backtests for ES of Acerbi and Szekely [2014] are in the same spirit

as the test of McNeil and Frey [2000].

The backtest for ES suggested by Costanzino and Curran [2015] tests if the whole tail of the distribution

beyond the VaRν-level has been estimated correctly. Strictly speaking, the test is therefore not a test for the

accuracy of a sequence of point forecasts for (VaRν ,ESν) but rather a test for the accuracy of a sequence of

probabilistic forecasts for tomorrow’s loss distribution with emphasis on the left tail. Other tests in this spirit

but of comparative type can be found in Gneiting and Ranjan [2011].
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As ES is only identifiable jointly with VaR, one has to be careful when formulating a one-sided test for ES.

Let (r∗1 , r
∗
2) = Θ(L(X)). Then it holds for all (r1, r2) that

r∗2 − r2 ≤ EV2(r1, r2, X) ≤ r∗2 − r2 +
ν − F (r1)

1− ν
(r∗1 − r1).

This shows that, similarly to the VaR case, testing the null hypothesis of sub-calibration for the ES component

EV2(r1, r2, X) ≤ 0 is equivalent to testing that r∗2 ≤ r2. Hence, the test of conditional sub-calibration of (VaR,

ES) is a test that the conditional VaR and ES predictions are at least as large as their optimal conditional

predictions. The Hommel’s procedure described in Section 2.2.1 can then be applied with p-value πm =

1− Φ(T2,m), where the T2,m’s are defined in (2.12).

Example 3. One could conceive a backtesting framework for expectiles as well, in a similar spirit to the

ES backtesting procedure proposed by McNeil and Frey [2000]. Assuming, as in the example above, that

Xt = µt + σtZt, where µt and σt are Ft−1-measurable and the Zt’s are i.i.d. with zero mean and variance one,

the conditional τ -expectile satisfies

eτ (Xt | Ft−1) = µt + σteτ (Zt)

and we see that the residuals
Xt − eτ (Xt | Ft−1)

σt
= Zt − eτ (Zt)

form an i.i.d. sequence of random variables with zero τ -expectile. This implies that V (eτ (Zt), Zt) with V given

at (2.6) is an i.i.d. sequence of random variables with mean zero, which can be tested using a bootstrap (as in

Efron and Tibshirani [1993], Section 16.4). Here it is necessary to replace the true volatility σt by an estimate.

This is analogous to the suggestion of McNeil and Frey [2000] for ES. Noticing that the identification function

for expectiles at (2.6) is positively 1-homogeneous, we obtain that

EV (eτ (Zt), Zt) = EV (eτ (Xt), Xt)σ
−1
t = 0.

This equality suggests that it is natural to perform a conditional calibration test for expectiles with test function

ht = σ̂−1t and test statistic T1 given at (2.11). This yields a valid asymptotic test under the assumptions in

Giacomini and White [2006, Theorem 1]. These assumptions are weaker than the model assumption Xt =

µt + σtZt.

In the case of expectiles, as in the case of VaR, a test for conditional super-calibration assesses the null-

hypothesis that all conditional expectile estimates are at least as large as the true conditional expectile.

2.3 Elicitability, forecast dominance and comparative backtests

Suppose now that the functional Θ = (ρ1, . . . , ρk) is elicitable with respect to P. Let {Xt}t∈N be a series of

negated log-returns adapted to the filtration F = {Ft}t∈N as well as to the filtration F∗ = {F∗t }t∈N. Let {Rt}t∈N
and {R∗t }t∈N be two sequences of predictions of Θ, which are F and F∗-predictable, respectively. We assume

that all conditional distributions L(Xt|Ft−1), L(Xt|F∗t−1) and all unconditional distributions L(Xt) belong to

P almost surely. We refer to the predictions {R∗t }t∈N as the standard procedure, while {Rt}t∈N is the internal

model. The two filtrations F and F∗ acknowledge the fact that the internal model and the standard model may

be based on different information sets. For example, one model may include more risk factors than the other,

or, certain expert opinion may be used to adjust one model but not the other.
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Definition 4. Let S be a consistent scoring function for Θ with respect to P. Then, {Rt}t∈N S-dominates

{R∗t }t∈N (on average) if

E(S(Rt, Xt)− S(R∗t , Xt)) ≤ 0, for all t ∈ N.

Furthermore, {Rt}t∈N conditionally S-dominates {R∗t }t∈N if

E(S(Rt, Xt)− S(R∗t , Xt)|F∗t−1) ≤ 0, almost surely, for all t ∈ N. (2.15)

The definition of conditional dominance is asymmetric in terms of the role of the standard procedure and the

internal procedure. The standard procedure and the information F∗ it is based on are considered as a benchmark

of predictive ability, which is why we condition on F∗t−1 and not on Ft−1. Any method that dominates the

benchmark has superior predictive ability relative to this benchmark.

Clearly, conditional S-dominance implies S-dominance on average. Ehm et al. [2016, Definition 2] introduced

the notion of dominance of one sequence of predictions over the other if one S-dominates the other on average

for all consistent scoring functions S for Θ. The notion of dominance is a strong one. That is, in the data

examples of Ehm et al. [2016] it was almost never observed that one forecast dominates the other. This makes

the concept difficult to employ in an applied decision making context. Furthermore, currently, a clear theoretical

understanding of the notion of dominance remains elusive.

There are several reasons why the predictions {Rt}t∈N should be preferred over {R∗t }t∈N if the former

dominates the latter. Firstly, comparison of forecasts with respect to the described dominance relations is

consistent with respect to increasing information sets. That is, if F∗t ⊆ Ft for all t and {Rt}t∈N, {R∗t }t∈N are

the optimal conditional forecasts with repect to their filtrations as defined at (2.8), then the internal procedure

dominates the standard procedure, both, conditionally and on average [Holzmann and Eulert, 2014, Theorem

1]. The same is true if {Rt}t∈N is F∗-conditionally optimal and {R∗t }t∈N is just F∗-predictable [Holzmann and

Eulert, 2014, Corollary 2]; see also Tsyplakov [2014].

Secondly, in the case k = 1, for most important functionals, including VaR and expectiles, strictly consistent

scoring functions are order sensitive or accuracy rewarding in the following sense. Essentially, if Θ(L(X)) <

r < r∗ or r∗ < r < Θ(L(X)) for some random variable X, then

E(S(Θ(L(X)), X)) < E(S(r,X)) < E(S(r∗, X)); (2.16)

see Nau [1985], Lambert [2012] for details. Therefore, if the risk measure forecasts {Rt}t∈N are always closer than

{R∗t }t∈N to the optimal F∗-conditional forecast, that is, Θ(L(Xt|F∗t )) < Rt < R∗t or Θ(L(Xt|F∗t )) > Rt > R∗t
for all t ∈ N almost surely, then {Rt}t∈N conditionally dominates {R∗t }t∈N. There are different proposals for

notions of order sensitivity in the case k ≥ 2; see, for example, Lambert et al. [2008], but the situation is less

clear in this case.

The condition for conditional S-dominance in (2.15) can be formulated equivalently as

E((S(Rt, Xt)− S(R∗t , Xt))ht) ≤ 0, for all ht ≥ 0, F∗t−1-measureable,

for all t ∈ N. It is tempting to work with a vector ht of F∗-predictable test functions in order to test for condi-

tional S-dominance as suggested in the conditional calibration tests. However, we are interested in comparing

the standard procedure to the internal procedure and reach a definite answer as to which one is to be preferred.

If E((S(Rt, Xt)−S(R∗t , Xt))ht,i) > 0 but E((S(Rt, Xt)−S(R∗t , Xt))ht,j) < 0 for different components ht,i,ht,j
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of the vector ht, no clear preference for either method can be given. Therefore, we do not pursue this approach

further.

In comparative backtesting we are interested in the null hypotheses

H−0 : The internal model predicts at least as well as the standard model.

H+
0 : The internal model predicts at most as well as the standard model.

The null hypothesis H−0 is analogous to the null hypothesis of a correct model and estimation procedure but

now adapted to a comparative setting. As mentioned in the introduction, considering a backtest as passed if the

null hypothesis cannot be rejected is anti-conservative or aggressive in nature and may therefore be problematic

in regulatory practice. On the other hand, the null hypothesis H+
0 is such that the comparative backtest is

passed if we can reject H+
0 . This means that we can explicitly control the type I error of allowing an inferior

internal model over an established standard model.

Let

λ∗ := lim sup
n→∞

1

n

n∑
t=1

E(S(Rt, Xt)− S(R∗t , Xt)), λ∗ := lim inf
n→∞

1

n

n∑
t=1

E(S(Rt, Xt)− S(R∗t , Xt)). (2.17)

It is clear that S-dominance on average implies λ∗ ≤ λ∗ ≤ 0. If the sequence of score differences {S(Rt, Xt)−
S(R∗t , Xt)}t∈N is first-order stationary, then λ∗ = λ∗, and λ∗ ≤ 0 implies S-dominance on average. If λ∗ in (2.17)

is non-positive, then the internal procedure is at least as good as the standard procedure, whereas the internal

procedure predicts at most as well as the standard procedure if λ∗ ≥ 0. It may happen that λ∗ and λ∗ have

different signs. Then, we cannot order the two risk measurement procedures in terms of predictive performance.

However, in finite samples this issue never occurs. Ordering risk measurement procedures is a compromise in

the quest for conditional dominance. On the one hand, it is clearly a weaker notion than conditional dominance,

but on the other hand, in finite samples, it introduces a meaningful order on all risk measurement procedures

given a sensible choice of the scoring function S; see Section 2.4.

Therefore, we reformulate our comparative backtesting hypotheses as

H−0 : λ∗ ≤ 0

H+
0 : λ∗ ≥ 0.

The test statistic

∆nS :=
1

n

n∑
t=1

(S(Rt, Xt)− S(R∗t , Xt)),

for n large enough, has expected value less or equal to zero under H−0 , whereas under H+
0 its expectation is

non-negative. Tests of H+
0 or H−0 based on a suitably rescaled version of ∆nS are so-called Diebold-Mariano

tests; see Diebold and Mariano [1995]. Under certain mixing assumptions detailed in Giacomini and White

[2006, Theorem 4],
∆nS − E(∆nS)

σ̂n/
√
n

is asymptotically standard normal with σ̂2
n an HAC estimator (Andrews [1991]) of the asymptotic variance,

σ2
n = var(

√
n∆nS). Therefore, using the test statistic

T4 =
∆nS

σ̂n/
√
n
, (2.18)
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we obtain an asymptotic level η-test of H+
0 if we reject the null hypothesis when Φ(T4) ≤ η, and of H−0 if we

reject the null hypothesis when 1− Φ(T4) ≤ η.

Based on the outcome of the tests of H+
0 and H−0 , Fissler et al. [2016] suggest the following three-zone

approach. We fix a significance level η ∈ (0, 1), for example, η = 0.05. If H−0 is rejected at level η, then H+
0

will not be rejected at level η. Similarly, if H+
0 is rejected at level η, then H−0 will not be rejected at level η.

Therefore, we say that the internal procedure is in the red region, that is, it fails the comparative backtest if

H−0 is rejected. The internal procedure is in the green region, that is, it passes the backtest, if H+
0 is rejected.

The internal procedure needs further investigation, that is, it falls in the yellow region, if neither H+
0 , nor H−0

can be rejected. For an illustration of these decisions, see Fissler et al. [2016, Figure 1].

There is one important difference between the three-zone approach described in Bank for International

Settlements [2013, p.103–108] for traditional VaR backtests and the three-zone approach of Fissler et al. [2016]

described here. In the former approach, the zones arise from varying the confidence level of the hypothesis test,

whereas in the latter approach the confidence level is fixed a priori, and the zones arise to separate cases where

there is enough evidence to clearly decide for superiority of one procedure over the other in contrast to cases

where there is no clear evidence.

2.4 Choice of the scoring function

Based on (2.2), (2.3) and (2.4), one has a large number of choices for strictly consistent scoring functions for

VaR, expectiles and (VaR, ES). In the case of VaRα, the standard choice is to take G(r) = r in (2.2) leading

to the classical asymmetric piecewise linear loss, see (2.19) below, also known as linlin, hinge, tick or pinball

loss; see Koenker [2005] for its relevance in quantile regression. In the case of expectiles, one could argue that

a natural choice is taking φ(r) = r2 in (2.3), which simplifies to the squared error function for the mean (up to

equivalence). This is also the scoring function suggested by Newey and Powell [1987] for expectile regression.

Consistent scoring functions for (VaR, ES) have only recently been discovered; see Acerbi and Szekely [2014],

Fissler and Ziegel [2016]. Therefore, there is no natural classical choice for the functions G1, G2 in (2.4).

A scoring function S is called positive homogeneous of degree b (or b-homogeneous) if for all r = (r1, . . . , rk)

and all x

S(cr, cx) = cbS(r, x), for all c > 0.

Efron [1991] argues that it is a crucial property of a scoring function to be positive homogeneous in estimation

problems such as regression. Patton [2011] underlines the importance of positive homogeneity of the scoring

function for forecast ranking. Positive homogeneous scoring functions are also favorable because they are

so-called “unit consistent”; see, for example, Acerbi and Szekely [2014]. That is, if r and x are given in

say U.S. dollars with r = $10 and s = $5, then, for a positive homogeneous scoring function S, the score

S(r, x) = S($10, $5) = ($)bS(10, 5) will have unit (U.S. dollars)b. In particular, changing the units, from, say,

U.S. dollars to million U.S. dollars, will not change the ordering of forecasts assessed by this scoring function,

and will thus also leave the results of comparative backtests unchanged. Concerning the choice of the degree

b of homogeneity, Patton [2006] shows that in the case of volatility forecasts, b = 0 requires weaker moment

conditions than a larger choice of b for the validity of Diebold-Mariano tests which are used in comparative

backtesting. Concerning the power of Diebold-Mariano tests, Patton and Sheppard [2009] find the best overall

power for volatility forecasts for the choice b = 0.

Section C in the OS presents results, which characterize positive homogeneous scoring functions for the risk
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measures that are of interest in this paper. Note that we only allow for predictions r > 0 or r = (r1, r2) with

r2 > 0. As we are interested in risk measures for losses, this is not a real restriction; see also Section 3.2.

For some orders of homogeneity b, there is no strictly consistent scoring function for the risk measures

of interest in this paper. In particular, the attractive choice b = 0 can often not be realized. However, for

comparative backtesting we are not interested in absolute values of expected scores but only in differences of

expected scores. Therefore, it is sufficient to have a scoring function such that the resulting score differences

are homogeneous. Such homogeneous score differences of order b = 0 exist for VaR, expectiles and (VaR,ES)

as shown by the results delegated to the OS (Section C). Examples below list scoring functions, which will be

used subsequently in the simulation study and real data analysis.

Example 4. For the comparative backtests for VaR that we investigate in Section 3.2, we consider the classical

1-homogeneous choice obtained by choosing G(r) = r in (2.2) leading to the scoring function

S(r, x) = (1− α− 1{x > r})r + 1{x > r}x. (2.19)

Guided by the arguments given above, we alternatively consider the 0-homogeneous score differences by choosing

G(r) = log r, r > 0 which leads to the score

S(r, x) = (1− α− 1{x > r}) log r + 1{x > r} log x, r > 0. (2.20)

Example 5. The choice φ(r) = r2 in (2.3) leads to the strictly consistent scoring function

S(r, x) = −1{x > r}(1− 2τ)(x− r)2 + (1− τ)r(r − 2x) (2.21)

for the τ -expectile eτ . Besides this 2-homogeneous choice, in Section 3.2, we also investigate the 0-homogeneous

alternative that arises by choosing φ(r) = − log(r), r > 0, hence we obtain the scoring function

S(r, x) = 1{x > r}(1− 2τ)
(

log
x

r
+ 1− x

r

)
+ (1− τ)

(
log r − 1 +

x

r

)
. (2.22)

Example 6. For (VaRν ,ESν), we consider the (1/2)-homogeneous scoring function given by choosingG1(x) = 0,

G2(x) = x1/2, x > 0 in (2.4) for comparative backtesting in Section 3.2. It is given by

S(r1, r2, x) = 1{x > r1}
x− r1
2
√
r2

+ (1− ν)
r1 + r2
2
√
r2

. (2.23)

As for the other risk measures, we also consider the 0-homogeneous alternative by choosing G1(x) = 0, G2(x) =

log x, x > 0 which yields the scoring function

S(r1, r2, x) = 1{x > r1}
x− r1
r2

+ (1− ν)
(r1
r2
− 1 + log(r2)

)
. (2.24)

Acerbi and Szekely [2014] proposed a class of 2-homogeneous scoring functions for (VaRν ,ESν) depending

on a parameter W > 0. It is strictly consistent when the class P of distributions is restricted to contain only

distributions F with

ESν(F ) < W VaRν(F ).

In practice, it is generally not possible to say what magnitude of W is realistic to cover all possible applications.

Therefore, we prefer to work with the homogeneous choices of strictly consistent scoring functions above and,

more generally, of the form in Theorem C.3 of the OS.
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3 Numerical studies

3.1 Forecasting of risk measures

In this section we discuss a number of estimation procedures for producing conditional forecasts of the three

risk measures discussed in this paper, namely the VaR, expectile and ES. Owing to the widespread use of VaR

in the banking sector, a great number of methods exist to produce its point forecasts; see, e.g., Kuester et al.

[2006] for an extensive review. In contrast, estimation and forecasting of expectiles in the risk measurement

context is a relatively recent topic; see, e.g., Kuan et al. [2009]. However, in many cases, similar methods as

those used for VaR forecasting can be adopted for expectiles.

For illustrative purposes, we consider the following framework for forecasting of the risk measures. Suppose

the series of negated log-returns {Xt}t∈N can be modeled as

Xt = µt + σtZt, (3.1)

where {Zt}t∈N is a sequence of i.i.d. random variables with zero mean and unit variance, and µt and σt are

measurable with respect to the sigma algebra Ft−1, representing the information about the process {Xt}t∈N
available up to time t − 1. In order to capture typical time dynamics of financial time series, one possibility

is to assume that the conditional mean µt follows an ARMA process, while the condition variance σ2
t evolves

according to a GARCH model specification.

Let ρ denote any of the three risk measures we consider. In the above setting, conditionally on the information

up to time t− 1, the one-step ahead forecast of ρ is

ρ(L(Xt | Ft−1)) = µt + σtρ(L(Z)), (3.2)

where Z is used to denote a generic random variable with the same distribution as the Zt’s. Following McNeil and

Frey [2000] and Diebold et al. [2000], one can adopt a two-stage estimation procedure for the forecast ρ(L(Xt |
Ft−1)). First µt and σt are estimated via the maximum likelihood procedure under a specific assumption1

on the distribution of the innovations Zt in (3.1). The second stage involves estimation of ρ(L(Z)), the risk

measure for i.i.d. sequence {Zt}t∈N, based on the sample of standardized residuals

{ẑt = (xt − µ̂t)/σ̂t}. (3.3)

We consider the following three approaches to handle the second stage in the forecasting procedure: fully

parametric (FP), filtered historical simulation (FHS), and a semi-parametric estimation based on extreme value

theory (EVT).

3.1.1 Fully parametric estimation

Under the fully parametric approach, a specific (parametric) model is assumed for the sequence of innovations

{Zt}t∈N. Examples of typically used probability distributions include the normal, Student’s t and a skewed t

1An alternative is to use the quasi-maximum likelihood estimation (MLE) procedure in which innovations Zt are assumed to

be standard normal. This is justified by a result in Bollerslev and Wooldridge [1992] stating that µt and σt would be consistently

estimated even if the distribution of innovations is not normal, provided that the models for µt and σt are correctly specified. As

pointed out in Kuester et al. [2006], the correct specification of dynamics for µt and σt may be difficult to fulfil in practice.
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distribution (see, e.g., Fernandez and Steel [1998]). Parameters of the assumed distribution for Zt’s, denoted FZ ,

can be estimated based on the standardized residuals {ẑt} in (3.3) using, for example, the maximum likelihood

method. If the model for Zt’s coincides with the one used to estimate the filter in the first stage, then no

additional estimation is required at the second stage with all model parameters coming directly from the first

stage estimation. The fitted distribution is used to compute the estimate of a given risk measure. In the case of

VaRα(Z), this is given by the α-quantile, F̂−1Z (α), whereas a τ -expectile eτ (Z) can be computed as discussed in

Section B.1 of the OS, where we give analytic expressions for expectiles of several commonly used distributions.

Since we consider only continuous distributions FZ , the ES can be computed as

ESν(Z) = E(Z|Z ≥ VaRν(Z)),

where we use numerical integration to evaluate the conditional expectation.

3.1.2 Filtered historical simulation

The method employs a non-parametric estimation of the risk measures based on the standardized residuals {ẑt}
in (3.3), which can be seen as representing a filtered time series; see, e.g., Christoffersen [2003, Chapter 5.6]. In

particular, we draw a sample {ẑ∗i ; 1 ≤ i ≤ N} of a large size N (e.g., N = 10, 000) from {ẑt; 1 ≤ t ≤ n} and

then take the empirical estimate of a given risk functional as the estimate for ρ(L(Z)). The empirical α-quantile

gives the VaR estimate V̂aR
FHS

α (Z). The empirical τ -expectile êFHS
τ (Z) is obtained using the least asymmetric

weighted squares via iterative minimization of

N∑
i=1

ωi(τ)(ẑ∗i − eτ )2, ωi(τ) = τ1{ẑ∗i > eτ}+ (1− τ)1{ẑ∗i < eτ} with respect to eτ .

The ES is estimated by the empirical version of the conditional expectation given that the residual exceeds the

corresponding VaR estimate:

ÊS
FHS

ν (Z) =
1

#{i : i = 1, . . . , N, ẑ∗i > V̂aR
FHS

α (Z)}

N∑
i=1

ẑ∗i 1{ẑ∗i > V̂aR
FHS

α (Z)}.

3.1.3 EVT-based semi-parametric estimation

Risk is naturally associated with extremal events, and hence risk measure estimates rely on accurate estimation

of a tail of the underlying distribution. However, inference about the distributional tails is notoriously difficult

as there are frequently not enough data points in the tail regions neither to give a proper justification for

a parametric model nor to obtain reliable empirical estimates. Hence, unless a sufficiently long time series is

available relative to the desired risk level for risk measure estimation, the two methods outlined in Sections 3.1.1

and 3.1.2 are unlikely to produce accurate forecasts. An alternative is to base estimation on asymptotic results

of extreme value theory (EVT). For a detailed account, refer to, e.g., Embrechts et al. [1997].

The main premise is that, for a sufficiently high threshold u, conditional excesses of random variable Z

satisfy:

Z − u | Z > u ∼ GP (βu, ξ), (3.4)

where GP (β, ξ) denotes the generalized Pareto distribution with scale β > 0 and shape parameter ξ ∈ R. It is

common in applications to set the threshold at an upper order statistic; i.e., u = z(k+1) for some k < n, where
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z(1) > z(2) > · · · > z(n) are the decreasing order statistics of the sample {z1, . . . , zn} from FZ . This leads to the

following EVT-based estimates of VaRα(Z) and ESν(Z) (see McNeil and Frey [2000]):

V̂aR
EVT

α (Z) = u+
β̂u

ξ̂

(( k

α n

)ξ̂
− 1
)
, ξ̂ 6= 0, (3.5)

and

ÊS
EVT

ν (Z) = V̂aR
EVT

ν (Z)

(
1

1− ξ̂
+

β̂ − ξ̂ u
(1− ξ̂)V̂aR

EVT

ν (Z)

)
, (3.6)

with (β̂u, ξ̂) being parameter estimates of the GP distribution fitted to excesses over u. In the spirit of the above

EVT-based estimators for VaR and ES, we derive an estimator for the τ -expectile. The details are provided in

Section B.2 of the OS.

In the discussion above we assume that threshold u or equivalently k, the number of upper order statistics,

is given so as to ensure adequacy of the approximation in (3.4). However, in practice, an accurate choice has to

be made to balance the bias-variance trade-off as a too large value of u increases variability of the parameter

estimates of βu and ξ, while insufficiently large u introduces the bias due to invalidity of (3.4). Various techniques

have been proposed to assist with the choice of threshold such as graphical tools based on linearity of the mean

excess function. As such methods require judgement at every time step at which conditional forecasts of risk

measures are to be made, they are prohibitive for our purposes. Hence, we adopt a pragmatic approach as in

McNeil and Frey [2000], and take k = 60 in samples of size n = 500.

3.2 Simulation study

In practice, traditional backtesting is perhaps the most commonly used way to evaluate and subsequently

choose among a number of competing forecasting procedures. While traditional backtesting is certainly suitable

to capture some aspects of forecasting procedures, it does not provide information on the relative performance

of different procedures with respect to the accuracy of forecasts, a seemingly natural criterion for a forecasting

method. The aim of the present simulation study is to illustrate the use of the methodologies for traditional

and comparative backtests discussed in the paper as well as to highlight the different messages delivered by the

two types of backtests.

3.2.1 Set-up and forecasting methods

The data {Xt}t∈Z used for the analysis are generated from an AR(1)-GARCH(1,1) process:

Xt = µt + εt, µt = −0.05 + 0.3Xt−1, εt = σtZt, σ2
t = 0.01 + 0.1ε2t−1 + 0.85σ2

t−1, (3.7)

where innovations {Zt}t∈Z form a sequence of independent random variables with a common skewed t distribu-

tion (see Example B.6 in the OS) with shape parameter ν = 5 and skewness parameter γ = 1.5.

Quality of a forecasting procedure is determined by various factors. In a parametric or semi-parametric set-

up, potential model misspecification as well as estimation uncertainty in small samples can be detrimental for

prediction. Non-parametric methods, while requiring no assumptions on the underlying model, are also subject

to sampling variability and have strong limitations when dealing with extreme or tail events. The forecasting

procedures we consider in the simulation study aim to cover a spectrum of models and estimation methods. We
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assume that the underlying process follows an AR(1)-GARCH(1,1) dynamics with innovations {Zt}t∈Z coming

from one of the following three distributions: the normal, the Student’s t and the skewed t distribution as in

Example B.6 in the OS. We then consider the following estimation procedures:

• fully parametric estimation (Section 3.1.1) with the methods abbreviated as ”n-FP”, ”t-FP” and ”st-FP”

under the assumption of normal, t and skewed t distributed innovations, respectively;

• filtered historical simulation (Section 3.1.2) with the methods abbreviated as ”n-FHS”, ”t-FHS” and

”st-FHS”;

• EVT-based estimation (Section 3.1.3) with the methods abbreviated as ”n-EVT”, ”t-EVT” and ”st-EVT”.

In addition to the above-mentioned methods, we supplement results with the optimal forecasts (abbreviated as

”opt”), which uses the knowledge of the data generating process.

Estimation is conducted using the moving window of size 500, and forecasts are evaluated based on the

out-of-sample size of 5000 verifying observations. Section D of the OS provides an additional study in which

only 250 verifying observations are used for backtesting.

The analysis is implemented using the open source software R (R Core Team [2015]). The code is available

at https://github.com/nnolde/Elicitability-and-Backtesting.

3.2.2 Backtesting of risk measure forecasts

Table 1 contains an overview of the one-step ahead forecasts obtained under the procedures described in the

previous section. In particular, we report the average forecasts based on the series of moving estimation windows

for each of the three considered risk measures, denoted VaRα, eτ and ESν . The α levels for VaR are chosen in

accordance with typical values used for internal risk management (such as α = 0.90 and α = 0.95) as well as

the standard Basel VaR level α = 0.99. For expectiles and ES, the levels are selected in such a way that the

risk measure forecasts agree under the standard normal model.

In order to link to the previously used approaches to assess the quality of VaR forecasts (and to make

comparisons between the methods), we computed the percentage of times the observations exceeded the VaRα

forecasts, commonly referred to as the percentage of violations. Based on the values reported under the column

”% Viol.” in Table 1 , we observe that some of the misspecified models were actually able to hit nearly exactly

the expected proportion of violations by matching the risk measure level (1−α). This is the case, for instance,

for ”n-EVT” and ”t-EVT” methods at α = 0.99. Although large deviations from the risk measure confidence

level do suggest substantial method deficiencies (as in the case of ”n-FP” and ”t-FP” methods), these values also

highlight that the deviations from the (1−α) level alone are unlikely to provide a good basis for differentiating

the methods’ performance in terms of prediction.

In addition to risk measure average forecasts, Table 1 also reports the average scores along with the cor-

responding method rankings using two different (consistent) scoring functions for each of the three considered

risk measures. As the scoring functions we use require risk measure forecasts to be positive, we set the scores

across all methods to zero in those few cases where forecasts are negative. Note that in the case of (VaRν ,ESν),

only the forecasts for ESν are restricted to be positive.

The method rankings based on the average scores appear to be reasonable, and suggest some more general

conclusions with respect to method selection on the basis of forecasting accuracy. Similar to the results of

https://github.com/nnolde/Elicitability-and-Backtesting
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traditional backtesting, the numerical values in Table 1 provide further support to the observation that the choice

of the likelihood model in fitting the AR(1)-GARCH(1,1) filter has an appreciable influence on the accuracy of

forecasts, perhaps more than previously thought in the context of using the quasi-maximum-likelihood methods.

Within each likelihood model, at lower levels for risk measure, fully parametric and FHS approaches tend to

demonstrate better predictive performance, whereas at higher levels EVT-based methods seem to have an

advantage, in particular, in the case of VaR. When the likelihood model is misspecified in fitting the AR(1)-

GARCH(1,1) filter, the non-parametric methods such as FHS and semi-parametric methods such as EVT-based

estimation allow for greater flexibility to diminish the effects of model misspecification than the fully parametric

approaches do. While in many cases, rankings obtained from each pair of consistent scoring functions coincide,

there also exist some discrepancies. This is not a surprise in the presence of misspecified models and estimation

uncertainty as already pointed out by Patton [2014]. For models for which the mean score is finite, the weak law

of large numbers suggests convergence of the sample average (score) to the true mean (score) as the out-of-sample

size tends to infinity. However, the convergence can be fairly slow. We found that in our simulation study,

the out-of-sample size of at least 1000 data points is necessary to achieve some stability in rankings. Hence, in

finite sample situations, one has to be aware of the effects of sampling variability on the final rankings of the

forecasting methods. Section D of the OS discusses results of a study where only 250 verifying observations were

considered to perform backtesting. In small samples, results of both traditional and comparative backtesting

may be greatly distorted by unrepresentative samples even when the underlying data generating process is

stationary.

Table 2 illustrates the traditional backtesting methodology presented in Section 2.2. Test statistics T1

in (2.11) and T2 in (2.12) are used, respectively, for two-sided and one-sided conditional calibration tests. The

one-sided tests for VaRα and τ -expectile are tests for super-calibration with p-values given by Φ(T2). In the case

of (VaRν ,ESν), we make use of the Hommel’s procedure (Hommel [1983]) with the adjusted p-values computed

as π̃ = q Cq min{π(m)/m;m = 1, 2} and capped at one, where πm = 1 − Φ(T2,m) for the one-sided tests of

sub-calibration; see (2.13). (The classical Bonferroni multiple test procedure resulted in qualitatively similar

conclusions.) For the simple conditional calibration tests, we set ht = 1. The test functions that were found to

work well in this simulation study for general conditional calibration tests are

ht =


(1, rt)

′ for VaRα,

σ̂−1t for expectile eτ ,

σ̂−1t ((r2,t − r1,t)/(1− ν), 1) for (VaRν ,ESν)

(3.8)

in the case of two-sided tests, and

ht =



(1, |rt|)′ for VaRα,

σ̂−1t for expectile eτ ,1 |r1,t| 0 0

0 0 1 σ̂−1t

′ for (VaRν ,ESν)

(3.9)

in the case of one-sided tests. The choice of test functions is important as it affects the properties of the test.

For example, we found that inclusion of the lagged values of the identification function as in Example 1 resulted

in tests which rejected all of the models including the optimal forecaster for VaR0.99 in the two-sided conditional

calibration tests. A possible explanation for this phenomenon is that for a chosen test function the distribution

of the test statistic becomes heavily skewed, making convergence to the asymptotic distribution slow. Another
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contributing factor, suggested by a referee, could be the instability of the Ω̂−1 estimate in (2.11) due to high

correlation of lagged values of the identification function. As discussed in Giacomini and White [2006], the

choice of the test function with too few or too many components will also have direct implications on the power

of the tests.

As expected, the numerical results in Table 2 show that the backtesting decisions based on the general

conditional calibration tests are more conservative in comparison to the corresponding simple conditional cali-

bration tests, subject to a sensible choice of the test function. This is particularly visible for one-dimensional

risk measures (VaR and expectiles) when performing the two-sided tests. The two-sided conditional calibration

tests for these two risk measures suggest the importance of the correct specification of the likelihood used in

fitting the AR(1)-GARCH(1,1) filter. The entirely parametric methods with misspecified models (here ”n-FP”

and ”t-FP”) fail traditional backtests even when testing for simple conditional calibration (with the exception

of VaR0.90). The general conditional tests are able to pick-up the misspecified likelihoods at least in some

instances; for example, when forecasting VaR0.90 and using the (symmetric) t distribution instead of the true

asymmetric underlying model, and similarly for τ -expectiles with τ = 0.96561 and τ = 0.98761. The general

conditional two-sided calibration tests also detect the differences in the second stage of risk measure forecasting

when different methods are applied to filtered series of innovations. For instance, at the highest risk measure

levels, the EVT-based methods tend to pass the conditional backtests in contrast to their empirical and in some

cases even parametric (correctly specified) counterparts; see panels for VaR0.99 and 0.99855-expectile. This is

true even under a misspecified likelihood model in the AR(1)-GARCH(1,1) filter.

We also note that the tests for one-dimensional risk measures appear to have better power properties than

the tests for the two-dimensional risk measure, (VaRν ,ESν), although a more thorough investigation into finite

sample properties of these tests would be necessary to draw more definitive conclusions. It can also be observed

that the one-sided tests are less conclusive than their two-sided analogues. This is perhaps not a surprise as it

may well happen that a method is not good at predicting the risk measure but gives a correct bound and thus

should not be rejected by a one-sided calibration test.

Finally, Figures 1 - 3 display the traffic light matrices for the three risk measures and two forms of consistent

scoring functions for each. These plots complement the method rankings on the basis of just the average scores

with the tests of predictive ability at the test level η = 5%. Along the vertical axis we consider hypothetical

”standard” models with the investigated ”internal” models displayed along the horizontal axis. The red and

green cells correspond to situations in which the comparative backtest is failed or passed, while yellow cells

indicate cases where no conclusive evidence is available to pass or fail the comparative backtest. The rows in

each figure correspond to different scoring functions used to compare the methods.

Inconclusive traffic light matrices can result if all methods are performing reasonably well, or, if the chosen

scoring function has poor discrimination ability. In the case of VaR, as the discrimination ability of both chosen

scoring functions seems good at level α = 0.99, it is likely that at α = 0.90 several models show a reasonable

predictive ability. This is in line with the largely inconclusive traditional backtests at level α = 0.90. At

α = 0.90, the scoring function in (2.19) is better at identifying models with the correctly specified likelihood

than the scoring function in (2.20), for which with just a few exceptions only the ”t-FP” method fails the

comparative backtests as an internal method against all the other possible standard methods. At α = 0.99,

the two scoring functions result in a good agreement with ”n-FP” being the worst forecaster (i.e., failing the

comparative backtests against all the other methods), the optimal method passing comparative backtests against

all other methods (the exception is ”st-EVT” under the scoring function in (2.20)).
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The situation is less clear for the τ -expectile. At level τ = 0.96561, the ”n-FP” method fails the comparative

backtest against most of the other methods under both scoring functions; the use of the scoring function in

(2.22) suggests failing the ”t-FP” method as well. The ”st-EVT” method would pass the comparative backtest

against the models with the normal likelihood and ”t-FP”. At level τ = 0.99855, both scoring functions do not

discriminate the methods much except for flagging the optimal forecaster as better than most other methods

and failing the ”n-FP” method. Expectiles have been used much less as a risk measure and it may be possible

that the present methods are indeed suboptimal for expectile prediction at high levels. Again, this is in line

with the results of the traditional backtests, in particular, the conditional two-sided tests.

For (VaRν ,ESν), the large number of conclusive comparative backtesting results indicates that we can

discriminate well between methods, and, as in the case of VaR it appears less important which method to use

at a lower level than at a higher level. In particular, we once again see that the methods with the correctly

specified likelihood show superior predictive performance. According to the scoring function in (2.23), the ”st-

EVT” method fails the comparative backtest against its parametric and non-parametric counterparts ”st-FP”

and ”st-FHS” at lower levels of ν. No definitive conclusions with respect to these models can be drawn at

ν = 0.975.

3.3 Data analysis: NASDAQ Composite index

We have fitted an AR(1)-GARCH(1,1) model to the negated log-returns of the NASDAQ Composite index

using a moving estimation window of 500 data points. The time series we consider is from Feb. 8, 1971 until

May 18, 2016, which gives us an out-of-sample size n =10,920 to perform backtesting. The data is publicly

available and has been downloaded from http://finance.yahoo.com. (The code and the data used are posted

at https://github.com/nnolde/Elicitability-and-Backtesting.) While for illustrative purposes we used

the entire time series available to us at the time of manuscript preparation, we do note that results are subject

to sampling variability, especially if only a small out-of-sample size is available to perform backtesting. Please

refer to Section D of the OS for further discussion of this issue.

Table 3 summarizes results of traditional and comparative backtesting for six forecasting methods (refer to

Section 3.2 for details on these methods) and, as before, for the three risk measures (VaR, expectile and the

(VaR, ES) pair) at their standard Basel levels.

In the case of VaR0.99, the traditional backtests based on the two-sided simple conditional calibration tests

are passed only under the n-EVT and st-EVT methods. So, here, the choice of the likelihood function in fitting

the AR(1)-GARCH(1,1) filter seems to have a lower impact than the choice of the method at the second stage

of forecasting applied to the fitted residuals. At this relatively high risk measure level, the EVT-based methods

outperform their other competitors based on both the traditional backtests and the average scores. It should

also be noted that the two scoring functions have lead to the same rankings of the forecasting procedures. The

fully parametric methods (n-FP and st-FP) show the worst performance in terms of their predictive ability.

n-FP falls into the red region against all other methods, whereas st-FP fails against the EVT methods and

cannot win against the FHS methods; see the traffic light matrices in Figure 4 (top row).

On the other hand, for the 0.99855-expectile, the tests of simple conditional calibration are rejected (at 5%

level) for all the methods that use the normal likelihood. Those methods that use the skewed-t likelihood also

tend to rank higher; although, in terms of significance, most methods fall into the yellow region (apart from

the n-FP method). The ranking of forecasts is different for the two scoring functions used. The 0-homogeneous

http://finance.yahoo.com
https://github.com/nnolde/Elicitability-and-Backtesting
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choice at (2.22) clearly ranks the methods using the normal likelihood lower than those using the skewed-t

likelihood in agreement with the results of the simple conditional calibration tests which is an argument in

favour of using (2.22) rather than (2.21).

For both VaR0.99 and 0.99855-expectile, the conditional calibration tests with the test functions as in the

simulation study, lead to the failure of the corresponding traditional backtest; see Table 3 for the expectile.

This may seem overly-conservative for practical purposes, and suggests either re-examining suitability of the

GARCH-type filter for these data, or the use of a more appropriate test function. For VaR0.99, we performed

the conditional calibration tests also with the test function ht = (1, V (rt−1, xt−1))′ (see Example 1) and the

resulting p-values are reported in Table 3. They lead to conclusions similar to those based on the simple

conditional calibration tests. This example underlines the importance of further studies on appropriate choices

of test functions.

The results for (VaRν ,ESν) with ν = 0.975 suggest better performance when a more flexible model such as

the skewed-t is used to fit the AR(1)-GARCH(1,1) filter, although the use of EVT-based methods has a potential

to compensate for likelihood mis-specifications. Again, fully parametric methods (n-FP and st-FP) fall into the

red region in the comparative backtests against most of the other more flexible alternatives; see bottom panels

in Table 3 and Figure 4. The outcomes show one interesting aspect which is not in contradiction with the theory

but may be puzzling and merit further investigation in future studies: The conditional calibration test rejects

all methods using a normal likelihood but the scoring functions rank the n-EVT method as the best or second

best performing method. It seems that the test function used in the conditional calibration test is sensitive

to the likelihood function used in fitting the AR(1)-GARCH(1,1) filter whereas the scoring functions are more

sensitive to the method at the second stage giving preference to the EVT methods.

4 Discussion

In the paper, we have discussed two approaches to backtesting risk measure forecasts. We differentiate between

traditional backtesting, which gives a “yes” or “no” answer to the question of whether a method is acceptable

or not, and comparative backtesting, specifically aimed at comparing the predictive performance of different

forecasting methods. In general, there appears to be a need for both traditional and comparative backtesting

methodologies. The former poses a requirement of identifiability on the risk measure functional, and serves

the purpose of categorizing methods based on whether the backtest is passed or not, albeit with a somewhat

limited ability to fail misspecified models. However, traditional backtesting does not provide a statistically

justifiable basis for method comparisons often sought when assessing the performance of say a newly proposed

forecasting procedure against an existing one, or when defending an internal procedure against some standard

procedure. Comparative backtesting provides a methodology to serve exactly these purposes. For methods that

are deemed acceptable under a traditional backtest, comparative backtesting allows to rank methods according

to their predictive performance based on a chosen consistent scoring function, provided that the risk measure

under consideration is an elicitable functional.

Traditional backtesting, which we formalize in the form of conditional calibration tests, provides a unifying

framework for currently available backtests of risk measures. To assess performance of different calibration

tests in a controlled environment, a simulation study was conducted. It emerged that in fact many methods

based on misspecified models may pass traditional backtests. And while the outcome of the backtest is the

same in all such cases (a pass), differences in risk measure forecasts under different methods will ultimately lead
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to different capital requirements. One practical implication of this is that such backtests may create a wrong

incentive of minimizing the capital, subject to passing the backtest, rather than aiming for a more accurate

forecasting method. From the simulation study, we have also seen that general conditional calibration tests

have a slightly better ability at detecting methods with misspecified models in comparison to the corresponding

simple conditional calibration tests, with the latter being able to flag only the most under-performing methods.

However, for the real data, often, simple and general conditional calibration tests produced similar results,

suggesting that in practice the use of simple conditional calibration tests may suffice. General conditional

calibration tests offer a more refined alternative, but require the choice of a test function. Further research is

necessary to gain more insight into the choice of the test function for different risk measures and how this choice

affects the outcomes of the tests.

In light of the above mentioned limitations of traditional backtests, regulators may additionally apply a

comparative backtest in cases where a traditional backtest is passed. This necessitates a standard model

against which the bank’s internal model is to be tested. Such a standard model should not be confused with the

standardized approaches currently used by regulators for trading book risk management of banks that either

are not able to go for the (internal) model-based approach or do not pass the regulatory backtesting. These

standardized approaches do not produce risk measure forecasts, and hence could not be incorporated into the

comparative backtesting framework. However, comparative backtests will create the correct incentive for the

banks to develop risk measure forecasting methods that aim for accuracy of forecasts and hence can adequately

quantify the risks. If the Basel committee were to introduce comparative backtesting, a foresting method to

serve as the “standard model” should be chosen among flexible methods that have low model risk and are

known to do well under fairly broad range of circumstances. One such possibility could be the filtered historical

simulation with a GARCH filter fitted using a flexible likelihood model such as the skew-t in our numerical

examples.

In summary, our recommendation to the Basel committee would be to adopt a two-stage backtesting frame-

work. At stage I, a calibration test is applied in line with the current practice. In terms of implementation, the

easiest option is to use the two-sided simple conditional calibration test. Conditionally on passing the stage I

test, stage II will then assess the bank’s “internal model” against the regulator’s “standard model” via a com-

parative backtest. From the regulatory point of view, the statistical significance of the comparative backtests

can be nicely summarized by means of traffic light matrices highlighting which methods pass or fail against a

standard procedure, and when not enough evidence is available to make a conclusive statement. Provided that

the regulatory risk measure is elicitable, comparative backtests require a choice of a consistent scoring function

for that risk measure. In the case of backtesting ES, the current regulatory risk measure for banks’ trading

books, the 0-homogeneous scoring function in equation (2.24) would be a reasonable choice as it is unit consis-

tent and has milder moment restrictions on the underlying stochastic process than other positive homogeneous

alternatives. Additionally, based on the data analysis, it yields results in rankings which are in better agreement

with the outcomes of the calibration tests and leads to slightly more conclusive results in terms of the traffic

light matrix entries versus the considered 1/2-homogeneous alternative.

It is worth noting that the comparative backtesting methodology can also be used by financial institutions

internally to select better performing methods among competing alternatives. The same would apply to aca-

demic literature seeking to compare different forecasting methods, with the comparison done on the basis of

forecast accuracy, in addition to calibration.

There are still many open problems and follow-up questions that require further investigation to create a
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fuller understanding of the usability of the presented backtesting methodologies. In the context of traditional

backtesting, we found conditional calibration tests to be better at detecting model mis-specifications. However,

these conditional tests require the user to choose a set of test functions. An exploration of potential test

function choices and their influence on finite sample properties of the tests in a broader context than covered in

our simulation study would be beneficial to guide practical applicability of these backtests. A choice problem

also arises in the context of comparative backtesting where it is possible to make use of any member of the

family of consistent scoring functions for a given risk measure functional. Here, different aspects of the resulting

backtests can be assessed. One particular aspect to consider is the existence of the mean score (or difference

in scores) for the underlying process. Financial time series tend to have fairly heavy tails and this would

place restrictions on the choice of a suitable scoring function. From this perspective, the proposed scoring

functions with 0-homogeneous score differences allow to study heavier-tailed processes than the b-homogeneous

choices (with b > 0). Finally, we have not explored the potentially promising possibility of using conditional

comparative backtests. There are many open questions on how they should be formulated and implemented to

be informative in practice.

Some of the risk measures used in practice are in fact non-elicitable. A prominent example here is the ES.

In such cases the notion of joint elicitability may open the door to the ability to conduct backtests, in this

case for multivariate risk measure functionals. We have explored the joint elicitability of VaR and ES, and,

on the basis of our simulation study, the backtesting results show a good ability to identify and differentiate

among methods relying on correct and misspecified model formulations. However, further research is needed

to provide a clearer interpretation of both traditional and comparative backtests. For example, in the case of

the pair (VaR, ES), the question would be whether it is a poor forecasting of VaR or ES or both that caused a

(traditional or comparative) backtest to fail.
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Figure 1: Traffic light matrices for VaRα forecasts at the test confidence level η = 0.05. The top and bottom

rows are based on the scoring functions in (2.19) and (2.20), respectively.
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Figure 2: Traffic light matrices for τ -expectile forecasts at the test confidence level η = 0.05. The top and

bottom rows are based on the scoring functions in (2.21) and (2.22), respectively.
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Figure 3: Traffic light matrices for (VaRν ,ESν) forecasts at the test confidence level η = 0.05. The top and

bottom rows are based on the scoring functions in (2.23) and (2.24), respectively.
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Table 3: Summary of traditional and comparative backtesting based on the negated log-returns on the NASDAQ

Composite index with an AR(1)-GARCH(1,1) filter fitted over moving estimation window of 500 observations,

and the out-of-sample size of n =10,920; refer to Section 3.3 for details. The second column reports the average

risk measure forecasts. “% Viol.” gives the percentage of VaR0.99 forecast exceedances. The simple CCT

and general CCT columns contain the p-values for two-sided simple and general conditional calibration tests,

respectively. The final two columns show the average scores, scaled by one minus the risk measure confidence

level for presentation purposes, based on the specified scoring functions along with the corresponding method

ranks (in brackets).

Method VaR0.99 % Viol. simple CCT general CCT S [eq. (2.19)] S [eq. (2.20)]

n-FP 2.363 2.3 0.000 0.000 3.8497 ( 6 ) 1.3017 ( 6 )

n-FHS 2.758 1.3 0.017 0.028 3.5842 ( 3 ) 1.1604 ( 3 )

n-EVT 2.774 1.2 0.112 0.152 3.5675 ( 2 ) 1.1550 ( 2 )

st-FP 2.739 1.3 0.004 0.012 3.5976 ( 5 ) 1.1669 ( 5 )

st-FHS 2.785 1.2 0.046 0.108 3.5904 ( 4 ) 1.1609 ( 4 )

st-EVT 2.811 1.1 0.181 0.290 3.5654 ( 1 ) 1.1517 ( 1 )

e0.99855 simple CCT general CCT S [eq. (2.21)] S [eq. (2.22)]

n-FP 2.363 0.000 0.000 25.9030 ( 6 ) 0.9660 ( 6 )

n-FHS 2.986 0.049 0.002 19.7333 ( 2 ) 0.2933 ( 4 )

n-EVT 2.966 0.023 0.001 19.8196 ( 5 ) 0.3084 ( 5 )

st-FP 3.041 0.163 0.011 19.8159 ( 4 ) 0.2509 ( 1 )

st-FHS 3.078 0.227 0.011 19.7533 ( 3 ) 0.2589 ( 2 )

st-EVT 3.037 0.112 0.006 19.6963 ( 1 ) 0.2687 ( 3 )

ES0.975 simple CCT general CCT S [eq. (2.23)] S [eq. (2.24)]

n-FP 2.375 0.000 0.000 1.7020 ( 6 ) 1.0492 ( 6 )

n-FHS 2.777 0.022 0.035 1.6587 ( 4 ) 0.9637 ( 4 )

n-EVT 2.813 0.261 0.015 1.6560 ( 1 ) 0.9607 ( 2 )

st-FP 2.810 0.001 0.248 1.6622 ( 5 ) 0.9691 ( 5 )

st-FHS 2.816 0.139 0.067 1.6582 ( 3 ) 0.9617 ( 3 )

st-EVT 2.857 0.327 0.117 1.6563 ( 2 ) 0.9597 ( 1 )
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Figure 4: Traffic light matrices for VaRα (top row) based on scoring functions in (2.19) (left) and (2.20) (right),

for τ -expectile (middle row) based on scoring functions in (2.21) (left) and (2.22) (right), and for (VaRν ,ESν)

(bottom row) based on scoring functions in (2.23) (left) and (2.24) (right) at the test confidence level η = 0.05,

for the data analysis in Section 3.3.
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