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OVERVIEW
Prediction of a response y0 from a feature-vector x0 given given an i.i.d. sample of
feature/response pairs (xi, yi) is a fundamental task of statistical learning.

We study prediction intervals for y0 that are based on empirical quantiles of
leave-one-out residuals.

This task is easy in (classical) asymptotic settings where E[y0‖x0] can be
consistently estimated (Butler and Rothman 1980; Stine 1985; Schmoyer 1992;
Olive 2007; and Politis 2013).

In other settings (large dimensions and/or model misspecification), resampling
methods like the residual bootstrap do not perform well; cf. Bickel and Freedman
(1983), Mammen (1996) and, recently, El Karoui and Purdom (2015).

For the proposed prediction intervals, we provide finite-sample and asymptotic
performance bounds, without requiring that E[y0‖x0] can be estimated
consistently.
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LEAVE-ONE-OUT PREDICTION INTERVALS

Consider a feature/response pair (x0, y0) with x0 ∈ Rp and y0 ∈ R, and a training
sample Tn = (xi, yi)

n
i=1, where the (xi, yi) are i.i.d. copies of (x0, y0). The goal is to

predict y0 from x0 using Tn at level 1− α.

Using a given prediction algorithm m̂n(x0) = m̂n(x0,Tn), we proceed as follows:

I For each i = 1, . . . ,n, write m̂[i]
n (·) for the prediction algorithm computed from

all but the i-th observation.
I Compute the leave-one-out residuals ûi = yi − m̂[i]

n (xi), i = 1, . . . ,n, the
corresponding order statistics û(1) ≤ · · · ≤ û(n) and the empirical quantiles
q̂α/2 = û(dnα/2e) and q̂1−α/2 = û(dn(1−α/2)e).

I Compute the prediction interval

PIα(Tn, x0) = m̂n(x0) + (q̂α/2, q̂1−α/2].
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CONDITIONAL COVERAGE PROBABILITY
Our goal is to control the conditional coverage probability

P(y0 ∈ PIα(Tn, x0)‖Tn).

We show that
EP |P(y0 ∈ PIα(Tn, x0)‖Tn)− (1− α)|

is small, uniformly over a large class P of distributions P (details later), provided
that

I the prediction algorithm is sufficiently stable so that m̂n(·) ≈ m̂[i]
n (·), and

I the prediction algorithm has bounded estimation error in probability, i.e.,
E[y0‖x0]− m̂n(x0) = OP(1) (no consistency required).

With this, the unconditional coverage probability P(y0 ∈ PIα(Tn, x0)) is also close
to 1− α.
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THE CLASS OF DISTRIBUTIONS P

We require the class P of distributions to satisfy the following condition.

(C1). Under every P ∈ P , . . .
I the feature/response pairs (x0, y0), (x1, y1), . . . are i.i.d.;
I the regression function x 7→ mP(x) := EP[y0‖x0 = x] exists;
I the error term u0 := y0 −mP(x0) is independent of the regressor vector x0 and

has a Lebesgue density fu,P with ‖fu,P‖∞ <∞.
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THE STABILITY CONDITION ON THE PREDICTION ALGORITHM

Fix η > 0 and a class P of distributions as in (C1). A predictor m̂n is η-stable with
respect to P if

sup
P∈P

EP

[(
‖fu,P‖∞

∣∣∣m̂n(x0)− m̂[i]
n (x0)

∣∣∣) ∧ 1
]
≤ η

for each i = 1, . . . ,n (cf. Bousquet and Elisseeff, 2002).
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A USEFUL LEMMA
Consider the (feasible) e.c.d.f. of the leave-one-out residuals, i.e.,

F̂n(s) = F̂n(s; Tn) =
1
n

n∑
i=1

1{ûi ≤ s}

and the (infeasible) true (conditional) c.d.f. of the prediction error, i.e.,

F̃n(s) = F̃n(s; Tn) = P(y0 − m̂n(x0) ≤ s‖Tn).

Then∣∣∣∣P(y0 ∈ PIα(Tn, x0)‖Tn)−
(

1− bnα/2)c+ dnα/2e
n

)∣∣∣∣ ≤ 2‖F̂n − F̃n‖∞.

In particular, if EP‖F̂n − F̃n‖∞ is small, uniformly over P ∈ P , then
EP|P(y0 ∈ PIα(Tn, x0)‖Tn)− (1− α)| is small, uniformly over P ∈ P .
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THEOREM 1

Assume that the class P of distributions satisfies (C1) and that the predictor m̂n(·)
is symmetric and η-stable w.r.t. P . Then, for each P ∈ P , each L > 1 and each
µ ∈ R, we have

EP‖F̂n − F̃n‖∞ ≤ P(|y0 −mP(x0)| > L)

+ P(|mP(x0)− m̂n(x0)− µ| > L)

+ 3
(

L‖fu,P‖∞
(

1
2n

+ 3η
))1/3

+

√
1
n

+ 6η.
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ASYMPTOTICS: PREDICTION WITH MANY VARIABLES

We study asymptotic settings where the dimension of the feature vector x0
depends on n, i.e., p = pn, so that pn/n→ κ ∈ (0, 1).

Our first result is an asymptotic adaptation of Theorem 1, which we then use to
deal with more specific scenarii.
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THEOREM 2
Let pn be a sequence of positive integers and let Pn be as in (C1) with pn replacing
p. Moreover, suppose the following:

I The predictor m̂n is symmetric and ηn-stable w.r.t. Pn with ηn → 0.
I For each P ∈ Pn, there exists σ2

P ∈ (0,∞) so that
lim supn→∞ supP∈Pn

σP‖fu,P‖∞ <∞.
I The scaled estimation errors |mP(x0)− m̂n(x0)|/σP and the scaled errors
|y0 −mP(x0)|/σP both are Pn-uniformly bounded.

Then
sup
P∈Pn

EP‖F̂n − F̃n‖∞
n→∞−→ 0.

In particular,

sup
P∈Pn

EP |P(y0 ∈ PIα(Tn, x0)‖Tn)− (1− α)| n→∞−→ 0.
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REGULARIZED M-ESTIMATORS

For a given convex loss function ρ : R→ R and a fixed tuning parameter
γ ∈ (0,∞) (both not depending on n), consider the estimator

β̂
(ρ)
n = argminb∈Rp

1
n

n∑
i=1

ρ(yi − x′ib) +
γ

2
‖b‖2

2.

These estimators are studied by El Karoui (2018) in a linear model yi = x′iβ + ui
allowing for heavy-tailed errors in an asymptotic setting where p/n→ κ ∈ (0, 1).

Under the assumptions maintained in that reference, Theorem 2 applies.
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JAMES-STEIN TYPE PREDICTORS

We consider the predictor m̂n(x0) = x′0β̂n(c), where β̂n(c) is a James-Stein-type
estimator

β̂n(c) =

{ (
1− cpnσ̂2

n
β̂′

nX′Xβ̂n

)
+
β̂n, if β̂′nX′Xβ̂n > 0,

0, otherwise,

where c ∈ [0, 1] is a tuning-parameter, where β̂n = (X′X)†X′Y and where
σ̂2

n = ‖Y− X′β̂n‖2/(n− pn).

For the classes Pn of underlying distributions, we consider families of nonlinear
regression models where the feature-vectors are randomly scaled linear functions
of i.i.d. variables, as described in (C2), which follows.



Introduction Finite samples Asymptotics Remarks References

JAMES-STEIN TYPE PREDICTORS
(C2). Fix finite constants C0 > 0, c0 > 0 and probability measures Ll, Lw on R, so

that Lw has mean zero, unit variance and finite fourth moment,
∫

s2Ll(dx) = 1
and Ll((−c0, c0)) = 0. For each n, the following holds under each
P ∈ Pn = Pn(C0, c0,Ll,Lw):

I (xi, yi) ∈ Rpn+1 are i.i.d.
I The feature vector x0 is distributed as

x0 ∼ l0Σ
1/2
P (w1, . . . ,wpn)

′,

where the wi are i.i.d. according to Lw, l0 ∼ Ll is independent of the wi and Σ
1/2
P

is the symmetric positive definite square root of a positive definite pn × pn
matrix ΣP.

I The response y0 has mean zero and

y0‖x0 ∼ mP(x0) + σPv0,

where v0 is independent of x0, has a Lebesgue density, mean zero, unit variance
and fourth moment bounded by C0, with measurable regression function mP
satisfying EPmP(x0) = 0.
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JAMES-STEIN TYPE PREDICTORS

THEOREM 3

For each n let Pn = Pn(C0, c0,Ll,Lw) be as in (C2). For each P ∈ Pn, define βP as
the minimizer of Ep(y0 − β′x0) over β ∈ Rpn . Assume that pn/n→ κ ∈ (0, 1); that
the densities v0 in (C2) are uniformly bounded; and that

lim sup
n→∞

sup
P∈Pn

EP

[(
mP(x0)− x′0βP

σP

)2
]

< ∞.

Then Theorem 2 applies to the James-Stein type predictor m̂n(x0) = x′0β̂n(c). (For
c = 0, this also covers the OLS-predictor x′0β̂n.)
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INTERVAL LENGTH

We now turn to the length of the prediction interval PIα(Tn, x0), i.e.,

q̂1−α/2 − q̂α/2.

For the classes Pn of underlying distributions, we consider families of parametric
linear models indexed by the regression parameter βP ∈ Rpn , by
ΣP = Ex0x′0 ∈ Rpn×pn and σ2

P = EP(y0 − x′0βP)2 ∈ (0,∞). These classes are defined
in (C3), which follows.
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INTERVAL LENGTH

(C3). Fix a finite constant c0 > 0 and probability measures Ll, Lw and Lv on R, so
that Lw and Lv have zero mean, unit variance and finite fourth moments, and
so that

∫
s2Ll(ds) = 1 and Ll((−c0, c0)) = 0. For each n, the following holds

under each P ∈ Pn = Pn(c0,Ll,Lw,Lv):
I (xi, yi) ∈ Rpn+1 are i.i.d.
I The feature vector x0 is distributed as

x0 ∼ l0Σ
1/2
P (w1, . . . ,wpn)

′,

where w1, . . . ,wpn are i.i.d. according to Lw, where l0 ∼ Ll is independent of the
wi, and where Σ

1/2
P is the symmetric square root of a positive definite pn × pn

matrix ΣP.
I The response y0 satisfies

y0‖x0 ∼ x′0βP + σPv0,

where βP ∈ Rpn , σP ∈ (0,∞), and where v0 ∼ Lv independent of x0.



Introduction Finite samples Asymptotics Remarks References

INTERVAL LENGTH

THEOREM 4
For each n let Pn = Pn(c0,Ll,Lw,Lv) be as in (C3). If pn/n→ κ ∈ (0, 1), then the
scaled empirical α-quantile q̂α/σP of the leave-one-out residuals ûi = yi − x′iβ̂

[i]
n

based on the OLS estimator converges Pn-uniformly in probability to the
corresponding α-quantile of the distribution of

lNτ + v,

where l ∼ Ll, N ∼ N(0, 1) and v ∼ Lv are independent and where τ = τ(L, κ) is a
constant.

This statement also holds in case κ = 0, provided that Lv has a continuous and
strictly increasing c.d.f. and pn →∞.

The constant κ satisfies κ = 0 if and only if τ(Ll, κ) = 0. Moreover, if
Ll({−1, 1}) = 1, then τ(Ll, κ) =

√
κ/(1− κ).
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LIMIT OF (q̂1−α/2 − q̂α/2)/σP WITH Ll({1}) = 1 AND FOR TWO CHOICES OF Lv

Figure: text here where is it???
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RELATED METHODS

I Sample splitting: See last Figure.
I Jackknife+: A modification of the method proposed here by Barber et al.

(2019). Controls unconditional coverage, even if predictor is not stable.
I Conformal prediction: Controls unconditional coverage, even if predictor is

not stable. Cf. Vovk et al. (1999, 2005, 2009) as well as Lei et al. (2017, 2013)
and Lei and Wasserman (2014).

I Tolerance regions: Give a confidence set for (x0, y0), from which a confidence
set for y0 can be obtained by cutting (so that efficiency is an issue). See Wilks
(1941, 1942), Wald (1943) and Tukey (1947), and Krishnamoorthy and Mathew
(2009) for an overview.
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EXTENSIONS

I The requirement in (C1), that u0 = y0 −mP(x0) is independent of x0, is an
issue. A relaxation of this is work in progress and is looking good so far.

I The requirement in (C1), that the density fu,P of u0 satisfies ‖fu,P‖∞ <∞, can
be replaced by a Hölder condition; the resulting theory becomes more
complex.

I Our prediction intervals have constant width, independent of x0. The
construction of variable-width prediction intervals is being investigated.
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