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Introduction

When only partial information is available

X In a risk analysis, we often need to generate scenarios from a model
with some prescribed correlation.

X To obtain this correlation, we may have limited or non-existent data
and may need to incorporate expert knowledge.

X To fix ideas, suppose we wish to take the dependence between the
cryptocurrencies Bitcoin, Ethereum, Litecoin and Ripple into account.

We have joint observations of Bitcoin, Ethereum and Litecoin and an
expert opinion on the correlation between Bitcoin and Ripple.
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Introduction

Cast in mathematical terms

Consider a random vector (X1, . . . ,Xd) and a measure of association %.

Let P% be the matrix with entries %(Xi ,Xj), i , j ∈ {1, . . . , d}.

• We have knowledge of some, but not all entries of P%. What is the
range of entries that are missing?

• Given a matrix P, can we find a distribution with P% = P?

• What if we have knowledge of some higher-order associations?

Here, we take % to be Kendall’s tau.

Matrices of Spearman’s rho, Blomquist’s beta, Pearson’s correlation, and
tail dependence coefficients have been investigated by Devroye and Letac
(2015), Embrechts et al. (2016), Huber and Marić (2015, 2019), Hofert
and Koike (2019), Wang et al. (2019).
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Concordance signature

Kendall’s tau

Kendall’s tau is a widely-used measure of correlation between X1 and X2:

τ(X1,X2) = Pr{(X1−X ∗1 )(X2−X ∗2 ) > 0}−Pr{(X1−X ∗1 )(X2−X ∗2 ) < 0} ,

where (X ∗1 ,X
∗
2 ) and (X1,X2) are independent and identically distributed.

Maurice Kendall (1907–1983)
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Concordance signature

Basic observation

One can see that if X1 and X2 have continuous distributions F1, F2, then

τ(X1,X2) = 2 Pr{(X1 − X ∗1 )(X2 − X ∗2 ) > 0}︸ ︷︷ ︸
κ{1,2}

−1.

The concordance probability κ{1,2} equals

κ{1,2} = 2 Pr(X1 < X ∗1 ,X2 < X ∗2 )

= 2 Pr{F1(X1) < F1(X ∗1 ),F2(X2) < F2(X ∗2 )}
= 2 Pr(U1 < U∗1 ,U2 < U∗2 ),

where the distribution of

(U1,U2) = (F1(X1),F2(X2))

is the copula C of (X1,X2). Hence, τ(X1,X2) depends only on C .
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Concordance signature

First question to be asked today

Consider a continuous random vector X = (X1, . . . ,Xd). The d × d
Kendall’s rank correlation matrix is given by

Pτ =
(
τ(Xi ,Xj)

)d
i ,j=1

.

What properties characterize Pτ?

Pτ is symmetric, its diagonal entries equal 1 and off-diagonal entries are
elements of [−1, 1].

These properties are necessary but not sufficient.
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Concordance signature

Concordance signature

Consider again a continuous random vector X = (X1, . . . ,Xd).

For each I ⊆ D = {1, . . . , d}, define the concordance probability κI :

κI = κ(XI ) = 2 Pr (XI < X ∗I ) = Pr ({XI < X ∗I } ∪ {X ∗I < XI}) ,

where X ∗ is an independent copy of X .

These probabilities form the concordance signature of X

κX = (κI : I ∈ P(D)),

where P(D) is the power set of D, κ{i} = 1 and κ∅ = 1.
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Concordance signature

What do we know about concordance signatures?

X The concordance signature κX of a random vector with continuous
margins F1, . . . ,Fd depends only on the copula of X , i.e., the
distribution function of

U = (F1(X1), . . . ,Fd(Xd)).

X For any set I = {i , j} with two elements i 6= j , we have that

τ(Xi ,Xj) = 2κI − 1.

X For any subset I with |I | > 2,

(2|I |−1 − 1)τ(XI ) = 2|I |−1κI − 1 .
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Concordance signature

Some sets are not needed

From the inclusion-exclusion principle, we have that when |I | is odd,

κI = 2 Pr(XI < X ∗I ) = 1 +
∑

A⊂I ,1≤|A|<|I |

(−1)|A| Pr(XA < X ∗A)

= 1− |I |/2 +
∑

A⊂I ,1≤|A|<|I |

(−1)|A|κA/2 ,

as shown in Genest et al. (2011).

The even concordance signature of C is

κE = (κI : I ∈ E(D)),

where E(D) ⊂ P(D) consists of the subsets of even cardinality, including
the empty set. Recall that κ∅ = 1.
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Concordance signature

An easy example

Consider a Gaussian random vector X . Then

κI = 2 Pr(XI < X ∗I ) = 2 Pr(XI < 0).

Suppose that d = 4 and the correlation matrix P of X is an
equicorrelation matrix with Pij = % = 0.7 for i 6= j . Then

κE ≈ (1, 0.747, 0.747, 0.747, 0.747, 0.747, 0.747, 0.541) .

For any subset I with |I | = 3, such as I = {1, 2, 3}, we have

κI ≈ 0.620 = 1− 3/2 + 3× 0.747/2.
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Concordance signature

Second question to be asked today

What properties characterize the even concordance signature κE?

We know that κE is a vector of length

bd/2c∑
j=0

(
d
2j

)
= 2d−1

whose first element is 1 and other elements lie in [0, 1]. What else?

To answer these questions, we first need to take a detour...
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Extremal mixtures

Extremal copulas

Consider an index set J ⊆ D = {1, . . . , d} and a random vector U with

Uj =

{
U if j ∈ J,

1− U if j 6∈ J,

where U is uniform on [0, 1].

The vector U has uniform margins and spreads its mass uniformly along a
main diagonal of the unit hypercube [0, 1]d . Its cdf is the extremal copula

C (u1, . . . , ud) =

(
min
j∈J

uj + min
j∈J{

uj − 1

)+

.
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Extremal mixtures

What’s in a name?

Consider an extremal copula C with index set J ⊆∈ {1, . . . , d}.

The Kendall rank correlation matrix of C is such that

(Pτ )ij =

{
1 if i , j ∈ J or i , j ∈ J{,

−1 otherwise.

In other words, Pτ is an extremal correlation matrix. We can also write

Pτ = (2s − 1)(2s − 1)>,

where s is a vector of length d with sk = 0 if k ∈ J and sk = 1 otherwise.

In fact, Pτ is also the Spearman and Pearson correlation matrix of C .
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Extremal mixtures

Signature of an extremal copula

For I ⊆ D, let

aI =

{
1 if I ⊆ J or I ⊆ J{,

0 otherwise.

Clearly, a{i} = 1; we also set a∅ = 1 by convention.

Take U ∼ C and let UI be the subvector with indices in I . The quantity
aI is an indicator which states whether the components of UI are
comonotonic variables or not.

The signature of an extremal copula with index set J is

aJ = (aI , I ∈ P(D)).
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Extremal mixtures

Enumerating extremal copulas

Each of the 2d−1 main diagonals of [0, 1]d corresponds to one extremal
copula:

X The k-th main diagonal of the hypercube is a line joining its vertices
sk and 1− sk , where sk = (sk,1, . . . , sk,d) of k − 1 when represented
as a d-digit binary number.

For example, when d = 3 we have

s1 = (0, 0, 0), s2 = (0, 0, 1), s3 = (0, 1, 0), s4 = (0, 1, 1).

X The k-th extremal copula C (k) spreads its mass along the k-th main
diagonal. Its index set Jk corresponds to the zeros in sk , viz.

j ∈ Jk ⇔ sk,j = 0.
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Extremal mixtures

Illustration in 3D
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Samples of size 2000 from extremal copulas C (1), C (2), C (3) and C (4) in d = 3.
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Extremal mixtures

Extremal mixtures

An extremal mixture copula has the form

C =
2d−1∑
k=1

wkC
(k) ,

where C (k), k ∈ {1, . . . , 2d−1} are extremal copulas. The weights satisfy

a) w1 ≥ 0, . . . ,w2d−1 ≥ 0;

b) w1 + · · ·+ w2d−1 = 1.
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Extremal mixtures

Illustration in 3D
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A sample of size 100 from extremal mixture in d = 3 with weights

w = (0.1, 0.2, 0.3, 0.4).
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Extremal mixtures

Signatures of extremal mixtures

Theorem 1: Signatures of extremal mixtures

For an extremal mixture copula C =
∑2d−1

k=1 wkC
(k)

κ(CI ) =
2d−1∑
k=1

wkκ
(
C

(k)
I

)
for any I ⊆ D.

This results means that for any extremal mixture C ,

κC =
2d−1∑
k=1

wkκC (k) =
2d−1∑
k=1

wkaJk .
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Concordance signatures of arbitrary copulas

A stunning result

Theorem 2: Signatures of arbitrary copulas

Let C be a d-dimensional copula and κC = (κI , I ∈ P(D)) its
concordance signature.

Then there exists a unique extremal mixture copula with the same
concordance signature.

That is, the set of all attainable concordance signatures of d-dimensional
random vectors with continuous margins is the convex hull

{2d−1∑
k=1

wkaJk : w ≥ 0,
2d−1∑
k=1

wk = 1
}
.
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Concordance signatures of arbitrary copulas

The reasons behind

X An extremal mixture copula CE with weights w is the copula of

UY + (1− U)(1− Y ),

where U is uniform and independent of the Bernoulli random vector
Y with the property that for all k ∈ {1, . . . , 2d−1},

Pr(Y = sk) = Pr(Y = 1− sk) = wk/2.

X Such a Y is radially symmetric, or palindromic, viz. Y d
= 1− Y .

X The correspondence between palindromic Bernoulli random vectors
and extremal copulas is one-to-one.
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Concordance signatures of arbitrary copulas

The reasons behind (cont’d)

X Take U and U∗ independent and distributed as C . Then

κI = 2 Pr (UI < U∗I ) = 2 Pr
{

sign(U∗I −UI ) = 1
}

X Set Y = (1/2)× {sign(U∗I −UI ) + 1} and observe that Y is
palindromic.

X The concordance signature κC uniquely determines the law of Y .

X The law of Y uniquely determines an extremal mixture CE, viz.

wk = (1/2)× Pr(Y = sk), k ∈ {1, . . . , 2d−1}

X We find that κC = κCE . �
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Attainability of concordance signatures

Attainability of Kendall rank correlation matrices

Let P(k) be the extremal correlation matrix of the kth extremal copula, viz.

P(k) = (2sk − 1)(2sk − 1)>,

where k ∈ {1, . . . , 2d−1}.

Characterization of Kendall’s tau matrices

The d × d correlation matrix P is a Kendall’s tau rank correlation matrix if
and only if P can be represented as a convex combination of the extremal
correlation matrices in dimension d , i.e.,

P =
2d−1∑
k=1

wkP
(k) .

The convex hull of the matrices P(k) is called the cut-polytope (Huber and
Marić, 2019).
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Attainability of concordance signatures

Illustration in 3D
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Attainability of concordance signatures

Illustration in 2D
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Attainability of concordance signatures

Not all correlation matrices are attainable

Consider the matrix

1

12

 12 −5 −5
−5 12 −5
−5 −5 12

 .

This matrix is symmetric and positive definite, with eigenvalues

(17/12, 17/12, 1/6).

However, it is not a Kendall’s rank correlation matrix. The only possible
weights would be

1

24
× (−27, 17, 17, 17)
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Attainability of concordance signatures

A picture to convince you
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Attainability of concordance signatures

Attainability of higher-order concordance probabilities

Let κ be the even concordance signature of a copula C .

Let Ad be the 2d−1 × 2d−1 matrix with columns aEJk , k ∈ {1, . . . , 2d−1},
i.e., the even concordance signatures of the extremal copulas.

The fact that κ is also the even concordance signature of a unique
extremal copula means that the constrained linear equation system

κ = Adw , w ≥ 0

has a unique solution.

Aside: It can be shown that Ad is of full rank.

J.G. Nešlehová December 9, 2020 28 / 46



Attainability of concordance signatures

Example

Consider C in d = 4 and suppose that all bivariate tau’s are equal, viz.

κC = c(1, κ2, . . . , κ2︸ ︷︷ ︸
6×

, κ4).

In principle, for any I with |I | = 2,

τI ≡ τ2 ∈ [−1, 1] and τ{1,2,3,4} ≡ τ4 ∈ [−1/7, 1].

With the results we just derived, we can show that in fact,

κ2 ∈ [1/3, 1] and κ4 ∈ [max(2κ2 − 1, 0), (3κ2 − 1)/2],

which restricts the set of attainable pairs (τ2, τ4).
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Attainability of concordance signatures

Visualization of the set (τ2, τ4)
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This result holds whatever the dependence structure!
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Attainability of concordance signatures

Compatibility problems

Let S ⊂ E(D) be a strict subset of the even power set containing ∅ and

λ = (λI : I ∈ S)

be some corresponding candidate partial concordance signature.

Questions to be asked:

X Is λ part of a signature of a d-variate continuous distribution?

X If it is, can we identify the remaining part of the signature compatible
with λ?

This is related to the harder compatibility problem: Are some fixed
lower-dimensional copulas margins of a bona-fide d-variate copula?
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Attainability of concordance signatures

Finding compatible signatures

Let A
(1)
d be the matrix consisting of the rows of Ad that correspond to S .

A linear programming problem

Find the set of all w ∈ R2d−1
such that

A
(1)
d w = λ and w ≥ 0.

If the set is non-empty, it is a convex polytope with vertices wi ,
i ∈ {1, . . . ,m} that can be found using the algorithm of Avis and Fukuda.

The remaining part of the signature is then any element of the convex hull{
m∑
i=1

αiA
(2)
d wi ,

m∑
i=1

αi = 1, α1 ≥ 0, . . . , αm ≥ 0

}
.
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Attainability of concordance signatures

Example

Take d = 5 and suppose that

κ{i ,j} = 2/3, i 6= j and κ{1,2,3,4} = κ{1,2,3,5} = 0.4.

To complete κ, we need to specify κ{1,2,4,5}, κ{1,3,4,5} and κ{2,3,4,5}.
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Attainability of concordance signatures

Finding a concrete compatible concordance signature

If we wish to find one compatible concordance signature, we can also solve

An optimization problem

Minimize
‖A(2)

d w‖
(
or ‖1− A

(2)
d w‖

)
subject to the constraints

A
(1)
d w = λ and w ≥ 0.

In this example, we get

κ{1,2,4,5} = κ{1,3,4,5} = κ{2,3,4,5} =
17

45
≈ 0.378

(
or

4

9
≈ 0.444

)
.
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Elliptical distributions

Elliptical copulas seem versatile

X The copula of an elliptical random vector X with Pr(X = 0) = 0 is
called an elliptical copula.

X Any correlation matrix is the correlation matrix of an elliptical (in fact
Normal) distribution

X Elliptical copulas are parametrized by a correlation matrix P.

X From Lindskog et al. (2002),

τ{i ,j} =
2

π
arcsin(Pij), i 6= j ∈ {1, . . . , d}.

X It is tempting to believe that any Kendall rank correlation matrix is
attainable within the class of elliptical copulas.
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Elliptical distributions

Surprise!

Consider the matrix

M =


1 −0.19 −0.29 0.49

−0.19 1 −0.34 0.30
−0.29 −0.34 1 −0.79

0.49 0.30 −0.79 1

 .

Solving the optimization problem discussed before gives the weights

w = (0.04, 0.005, 0.36, 0, 0.0625, 0.2475, 0.2825, 0.0025).

This means that M is a Kendall’s rank correlation matrix.

But sin(πM/2) is not positive semi-definite.

Hence M is not a Kendall’s rank correlation matrix of an elliptical copula.
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Signature estimation

Estimating concordance signatures from data

X Consider a random sample X1, . . . ,Xn from an unknown distribution
with copula C and continuous marginals F1, . . . ,Fd .

X For any I ⊆ {1, . . . , d}, |I | ≥ 2, a natural estimator of κI is

κI ,n =
2

n(n − 1)

∑
i 6=j

∏
k∈I

1{Xik ≤ Xjk}.

X κI ,n corresponds to the well-known estimators of Kendall’s tau for
d = 2 (Hoeffding, 1948) and d > 2 (Genest et al., 2011).

X Asymptotic normality is easy to establish using the U-statistics theory.
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Signature estimation

One last result

Theorem 4: Empirical signatures are intrinsic

Assuming that n ≥ 2 and there are no ties in the sample, there exists a
d-dimensional copula Cn such that (κI ,n, I ⊆ P(D)) is the concordance
signature of Cn.

Idea behind: Let Yij =
{

sign(Xi − Xj) + 1
}
/2 for i 6= j and set

ŵk =
2

n(n − 1)

∑
i<j

(
I{Yij=sk} + I{Yij=1−sk}

)
.

Then (ŵk , k = 1, . . . , 2d−1) are the weights of the extremal mixture with
concordance signature (κI ,n, I ⊆ P(D)).
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Signature estimation

Illustration with crypto currencies
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Log-returns on Bitcoin, Ethereum, Litecoin and Ripple prices in USD.
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Signature estimation

Range of unobserved correlations

Imagine we have not observed Ripple prices and we only know Kendall’s
tau between Bitcoin, Ethereum and Litecoin: (0.278, 0.333, 0.361).
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Range of attainable correlations with Ripple.
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Signature estimation

Adding more information

Now suppose we are being told that the correlation between Ripple and
Bitcoin is 0.196.
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Signature estimation

Thank you for your attention!

On attainability of Kendall’s tau matrices and concordance signatures

Alexander J. McNeil, Johanna G. Neslehova, Andrew D. Smith
https://arxiv.org/abs/2009.08130

The package KendallSignature on GitHub

https://github.com/ajmcneil/KendallSignature

J.G. Nešlehová December 9, 2020 42 / 46

https://arxiv.org/abs/2009.08130
https://github.com/ajmcneil/KendallSignature


Bibliography

References I

Devroye, L. and Letac, G. (2015). Copulas with prescribed correlation
matrix. In Donati-Martin, C., Lejay, A., and Rouault, A., editors, In
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Appendix

Elliptical copulas are actually quite restrictive...

It’s worse when we look at the entire concordance signature.

Take any I ⊂ {1, . . . , d}, |I | ≥ 2. From the stochastic representation of X ,

κI (X ) = 2 Pr (XI − X ∗I < 0)

= 2 Pr
{

(R1AS)I < 0
}

= 2 Pr
{

(R2AS)I < 0
}

= 2 Pr(XI < 0) = 2 Pr(ZI < 0) = κI (Z ),

where Z is multivariate Normal with the same correlation matrix P. Hence

κX = κZ .

Once the bivariate concordance probabilities of an elliptical copula have
been determined, all higher order κI ’s have been fixed also.
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Appendix

The spider copula theorem

Theorem 3: Spider copula theorem

As ν → 0 the d-dimensional Student t copula C t
ν,P converges pointwise to

the unique extremal mixture copula that shares its concordance signature.
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Scatterplot of data with distribution C t
ν,P when ν = 0.03 and P is the 3× 3

matrix with elements ρ12 = 0.2, ρ13 = 0.5 and ρ23 = 0.8.
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