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PCA in high dimensions

Let X ,X1, . . . ,Xn be i.i.d. centered random variables taking values in a
p-dimensional Hilbert H space with (empirical) covariance operator

Σ = EX ⊗ X and Σ̂ =
1

n

n∑
i=1

Xi ⊗ Xi

(λj)
p
j=1: non-increasing sequence of eigenvalues of Σ

(uj)
p
j=1: sequence of eigenvectors of Σ

(Pj)
p
j=1: sequence of spectral projectors of Σ, Pj = uj ⊗ uj

Challenges: p increases in n (the same order as n) or even p =∞

How close are λ̂j , P̂j to their population counterparts λj ,Pj?
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High-dimensional phenomena in the spiked model

Theorem 1 (Baik & Silverstein ’06, Paul ’07, Nadler ’08, etc.)

Suppose that X is Gaussian and that

Σ = diag(λ1, 1, . . . , 1) ∈ Rp×p with λ1 > 1 fixed

Then, as p/n→ γ > 0, almost surely,

λ̂1 →

{
λ1 + γ λ1

λ1−1 if γ
(λ1−1)2 < 1

(1 +
√
γ)2 otherwise

‖P̂1 − P1‖2
2 →

{
c1

γλ1

(λ1−1)2 if γ
(λ1−1)2 < 1

2 otherwise

Related results hold for more complicated spiked models.

Extensions to general eigenvalue settings?

Extensions to more general distributional settings?
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Covariance operators in infinite dimensions
Key feature in functional data
analysis and kernel-based learning:
spectral decay of Σ

polynomial decay: λj = j−α, j ≥ 1

exponential decay: λj = e−αj , j ≥ 1

theory less developed:

λ̂j − λj
λj

w−→ N (0, 1), which j ?

Liang
& Rakhlin ’20: decay on MNIST

S. Fischer and I. Steinwart. “Sobolev norm learning rates for regularized least-squares
algorithms”. In: J. Mach. Learn. Res. ()

P. L. Bartlett et al. “Benign overfitting in linear regression”. In: Proc. Natl. Acad. Sci.
USA ()

P. Hall and J.L. Horowitz (Feb. 2007). “Methodology and convergence rates for
functional linear regression”. In: The Annals of Statistics 35.1, pp. 70–91
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Functional regression

Given (Xk)k∈Z, (Yk)k∈Z, consider

Xk = Φ(Yk) + εk , k ∈ Z,

where Φ is an unknown linear operator, and (εk)k∈Z is a noise
sequence.

A common estimator for Φ is (with sample size n)

Φ̂b(·) =
b∑

j=1

1

n

n∑
k=1

〈Yk , û
y
j 〉Xk

λ̂yj
〈ûyj , ·〉, b = bn →∞.

Optimal choice of bn (depends on (λyj )j∈N) leads to minimax rates,

but requires good control of λ̂yj and ûyj for j ≤ bn.

P. Hall and J.L. Horowitz (Feb. 2007). “Methodology and convergence rates for
functional linear regression”. In: The Annals of Statistics 35.1, pp. 70–91
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Functional AR(1)

If Yk = Xk−1, functional regression becomes the functional AR(1)
model

Xk = Φ(Xk−1) + εk , k ∈ Z.

More generally, we can consider AR(q) in H processes

Xk =

q∑
i=1

Φi (Xk−i ) + εk , k ∈ Z,

where Φj are unknown linear operators.

Can even let q =∞.

In all those cases, estimation crucially depends on ûj , λ̂j .
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Classical math tools for thinking about spectral methods

Weyl bound

We have |λ̂j − λj | ≤ ‖E‖∞ with ‖ · ‖∞ operator norm and E = Σ̂− Σ

Davis-Kahan sin Θ bound

We have

‖P̂j − Pj‖2 ≤
2
√

2‖E‖∞
gj

with spectral gap gj = min(λj−1 − λj , λj − λj+1) and HS norm ‖ · ‖2

applied to kernel PCA (Blanchard et al. ’05), functional PCA (Horváth &
Kokoszka ’12), sparse PCA (Vu & Lei ’13), robust PCA (Minsker & Wei ’17),
distributed PCA (Fan et al. ’19)
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Classical math tools for thinking about spectral methods

Definition 2

The reduced resolvent of Σ at λj is defined by Rj =
∑

k 6=j
1

λk−λj Pk

Linear perturbation expansion

If

γj :=
‖E‖∞
gj

< 1/2

then

‖P̂j − Pj + RjEPj + PjERj‖2 ≤
4γ2

j

1− 2γj

More generally λ̂j , P̂j admit a Taylor series in E provided that γj < 1/2

T. Hsing and R. Eubank (2015). Theoretical foundations of functional data
analysis. John Wiley & Sons
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Relative idea for thinking about spectral methods

Relative sin Θ bound (J. & W.)

We have

‖P̂j − Pj‖2 ≤ C‖(|Rj |1/2 + g
−1/2
j Pj)E (|Rj |1/2 + g

−1/2
j Pj)‖∞

for some absolute constant C > 0.

Previous work and different approach:

A. Mas and F. Ruymgaart. “High-dimensional principal projections”. In: Complex
Anal. Oper. Theory ()
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Relative idea for thinking about spectral methods

Let J = {1, . . . , J} (write j if J = {j}). We write

PJ =
∑
j∈J

Pj , PJ c =
∑
k∈J c

Pk , RJ c =
∑
k∈J c

1

λk − λj
Pk .

δJ = δJ (E ) :=
∥∥∥(|RJ c |1/2 + g

−1/2
J PJ

)
E
(
|RJ c |1/2 + g

−1/2
J PJ

)∥∥∥
∞
.

Moreover, for a Hilbert-Schmidt operator A on H we define

LJA =
∑
j∈J

∑
k∈J c

1

λj − λk
(PkAPj + PjAPk).
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Relative idea for thinking about spectral methods

Theorem 3 (J. & W.)

We have

‖PJ − P̂J ‖2
2 ≤ 32 min(|J |, |J c |)δ2

J (1)

and

‖P̂J − PJ − LJ E‖2
2 ≤ 48 min(|J |, |J c |)2δ4

J . (2)

Possible to replace δJ by min(δJ , δJ c ).

Eigenvalues, and eigenvectors?

Control of γj and δJ ?
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Effective versus relative rank setting

The effective rank (Koltchinkii & Lounici ’17) and the relative rank (J. &
W. ’18) are defined by

ej(Σ) =
tr(Σ)

gj
literature r !

rj(Σ) =
∑
k 6=j

λk
|λj − λk |

+
λj
gj

While the effective rank grows reciprocally with the gap, the relative rank
remains largely unaffected

upper bounds λj = j−α λj = e−αj

rj(Σ) j log j j
ej(Σ) jα+1 eαj
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Note on convexity

Convexity condition: There is a convex function

λ : R≥0 → R≥0, such that λ(j) = λj , (3)

at least for j large enough.

Exploiting the convexity, it follows that

rj(Σ) ≤ C1

∑
k 6=j

λk
|λj − λk |

≤ C2j log j and
∑
k 6=j

λkλj
(λj − λk)2

≤ Cj2,

where C is a constant which only depends on tr(Σ).

The convexity condition is quite general, valid in particular for
polynomial and exponential decay of eigenvalues.

H. Cardot, A. Mas, and P. Sarda (2007). “CLT in functional linear regression

models”. In: Probab. Theory Related Fields
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Relative bound for eigenvalues

Key: η̄kl =
〈uk ,Eul〉√
λkλl

=
〈uk , (Σ̂− Σ)ul〉√

λkλl
, k , l ≥ 1.

Theorem 4 (J. & W.)

Let j ≥ 1. Suppose that λj is a simple eigenvalue, meaning that λj 6= λk
for all k 6= j . Let x > 0 be such that |η̄kl | ≤ x for all k , l ≥ 1. Suppose
that

rj(Σ) =
∑
k 6=j

λk
|λj − λk |

+
λj
gj
≤ 1/(3x). (4)

Then we have
|λ̂j − λj − λj η̄jj |/λj ≤ Cx2rj(Σ). (5)
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Relative bound for eigenvectors

Theorem 5 (J. & W.)

Let j ≥ 1. Suppose that λj is a simple eigenvalue. Let x > 0 be such that
|η̄kl | ≤ x for all k , l ≥ 1. Suppose that Condition (4) holds. Then we have∥∥∥∥ûj − uj −

∑
k 6=j

√
λjλk

λj − λk
η̄jkuk

∥∥∥∥ ≤ Cx2rj(Σ)

√√√√∑
k 6=j

λjλk
(λj − λk)2

(6)

and ∣∣∣∣‖ûj − uj‖2 −
∑
k 6=j

λjλk
(λj − λk)2

η̄2
jk

∣∣∣∣ ≤ Cx3rj(Σ)
∑
k 6=j

λjλk
(λj − λk)2

. (7)

In (6) and (7), the sign of uj is chosen such that 〈ûj , uj〉 > 0.
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Effective versus relative rank setting

Write X =
∑

j≥1 λ
1/2
j ujηj with Karhunen-Loéve coefficients η1, η2, . . .

Setting 1

For some q > 4 we have supj≥1 E|ηj |q . 1

γj < 1/2 w.h.p. if 1√
n

ej(Σ) . 1

δj < 1/2 w.h.p. if 1√
n

rj(Σ) . 1

Control {|η̄kl | ≤ x} w.h.p., x ≈ n−1/2 (essentially).

S. V. Nagaev (1979). “Large deviations of sums of independent random
variables”. In: Ann. Probab.

U. Einmahl and D. Li. “Characterization of LIL behavior in Banach space”. In:
Trans. Amer. Math. Soc. ()
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High-dimensional phenomena under spectral decay

Theorem 6 (J. & W.)

Let X = X (n) be a sequence on r.v. in Setting 1 with covariances Σ = Σ(n). If

1√
n

rj(Σ)→ 0 as n→∞ (8)

then

g−1
j (λ̂j − λj)

P−→ 0 (9)

‖P̂j − Pj‖2
P−→ 0 (10)

(
√
n(λ̂j − λj/λj) is tight. (11)

Moreover, for j = 1 there is a sequence of r.v. X = X (n) in Setting 1 with
covariance operators Σ(n) such that (8), (9), (10) and (11) are equivalent.
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Example for Setting 1

Key: η̄kl =
〈uk ,Eul〉√
λkλl

=
〈uk , (Σ̂− Σ)ul〉√

λkλl
, k , l ≥ 1.

This can be written as a sum of (i.i.d.) random variables

√
nη̄kl =

1√
n

n∑
i=1

(
ηikηil − Eηikηil

)
.

Union bound and (standard) concentration inequalities provide control of
(p = dim(H))

P
(

max
1≤k,l≤p

∣∣η̄kl ∣∣ ≥ x
)
≤

∑
1≤i ,j≤p

P
(∣∣η̄kl ∣∣ ≤ x

)
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Example for Setting 1

For example, Fuk-Nagaev inequality yields

P
(

max
1≤k,l≤d

∣∣η̄kl ∣∣ ≥ C
√

log n√
n

)
. p2n1−q/4.

Using a more refined argument one can drastically reduce dependence on p
here. Hence, if

√
log n√
n

max
1≤j≤J

rj(Σ) . 1,

we get (for instance)

∣∣λ̂j − λj − λj η̄jj ∣∣/λj . √log n√
n

, 1 ≤ j ≤ J,

with high probability. No spatial dependence assumption on (ηj)j≥1 here!
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Example for Setting 1: weak dependence
Let (εi )i∈Z be i.i.d. For f taking values in H, consider the Bernoulli-shift
sequence

Xi = f
(
εi , εi−1, . . .

)
, i ∈ N,

Recall Xi =
∑

j≥1

√
λjujηij , where ηij = λ

−1/2
j 〈Xi , uj〉. ε′0 independent

copy of ε0, independent of (εi )i∈Z. Coupling X ′i of Xi defined as

X ′i = f
(
εi , . . . , ε1, ε

′
0, ε−1, . . .

)
, i ∈ N.

For j ≥ 1, let η′ij = λ
−1/2
j 〈X ′i , uj〉. Coupling distance

θiq = sup
j≥1

E1/p
∣∣ηij − η′ij ∣∣q. (12)

I. A. Ibragimov (1966). “On the accuracy of approximation by the normal
distribution of distribution functions of sums of independent random variables”. In:
Teor. Verojatnost. i Primenen 11, pp. 632–655

W. B. Wu (Jan. 2011). “Asymptotic theory for stationary processes”. In:
Statistics and its Interface 4, pp. 207–226
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Corollary 7 (J. & W.)

Suppose we are in Setting 1 with q ≥ 16. If (3) holds, then

E‖P̂j − Pj‖2
∞ ≤ E‖P̂j − Pj‖2

2 ≤ Cj2/n, 1 ≤ j ≤ C
√
n(log n)−5/2.

This result is (up to log terms) optimal in the case where λj = j−α−1,
α > 0 in a certain sense.
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This result is (up to log terms) optimal in the case where
λj = Cj−α−1, α > 0 in a certain sense.

For such a polynomial decay, given that supj≥1 E|ηj |2q ≤ q!Cq for all
q ≥ 1, it has been shown that for any j ≥ 1 (exists also information
theoretic bound)

E
∥∥P̂j − Pj‖2

∞ ≥ c(j2/n) ∧ 1.

We obtain the optimal bound for almost the whole range (up to the
factor (log n)−5/2) where the trivial bound 2 does not apply.
Moreover, only require mild conditions.

Note: The stochastic behaviour of the scores (ηj)j≥1 in terms of their
dependence structure is irrelevant for the optimal algebraic structure
conditions. In other words, this result cannot be improved assuming
that (ηj)j≥1 are independent.
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Effective versus relative rank setting

Write X =
∑

j≥1 λ
1/2
j ujηj with Karhunen-Loéve coefficients η1, η2, . . .

Sub-gaussian setting

η1, η2, . . . are independent and sub-Gaussian, i.e. supj≥1 ‖ηj‖ψ2 . 1

γj < 1/2 w.h.p. if
λj
gj

ej (Σ)
n . 1

δj < 1/2 w.h.p. if
λj
gj

rj (Σ)
n . 1

V. Koltchinskii and K. Lounici. “Normal approximation and concentration of
spectral projectors of sample covariance”. In: Ann. Statist. ()

V. Koltchinskii. “Asymptotically efficient estimation of smooth functionals of
covariance operators”. In: J. Eur. Math. Soc. ()
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Effective versus relative rank setting

Setting 2

(i) For some q > 4 we have supj≥1 E|ηj |q . 1

(ii) For some m ≥ 4 we have Eηi1ηi2 . . . ηim = 0 whenever one of the
indices i1, . . . , im ≥ 1 occurs only once

γj < 1/2 w.h.p. if
λj
gj

ej (Σ)
n . 1

δj < 1/2 w.h.p. if
λj
gj

rj (Σ)
n . 1

regimes λj = j−α λj = e−αj

relative j2 log j . n j . n
effective j2+α . n j . log n
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High-dimensional phenomena under spectral decay

Theorem 8 (J. & W.)

Assume Setting 2 with m = 4.

If
λj

gj

rj (Σ)
n → 0 then g−1

j (λ̂j − λj)
P−→ 0 and ‖P̂j − Pj‖2

P−→ 0

Current work: If nε
λj

gj

rj (Σ)
n → 0, ε > 0 arbitrarily small, then limit theorems

and much more are possible (higher order expansions).

Subject to appropriate Assumptions, replace nε with something weaker
(logq n, more structure).

Can extend everything to: longrun covariance operator, autocovariance
operators, robust empirical covariance operators.
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Spectral decay versus spiked models

bound λj = j−α−1 λj = e−αj

relative regime j2 log j . n j . n

|λ̂j − λj |/λj 1√
n

+ j log j
n

1√
n

+ j
n

‖P̂j − Pj‖2
j√
n

1√
n

effective regime j2+2α . n j . log n

PCA and RMT λ1 > 1 = · · · = 1, p
n → γ general (λj)

phase transition γ
(λ1−1)2 < 1 λ1

g1

r1(Σ)
n . 1

eigenvalue bias γ λ1
λ1−1

λ1
n r1(Σ)

But remember: phase transitions can already occur for r1(Σ)√
n
≥ c!
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Quantitative limit theorems in high dimensions

Tj = n‖P̂j − Pj‖2
2 (results actually apply to J .)

Sj = ‖Lj(Z )‖2
2 = ‖RjZPj + PjZRj‖2

2

Z Gaussian r.v. with cov(Z ) = cov(X ⊗ X )

uniform metric:

U
(
Tj , Sj

)
= sup

x∈R
|P(Tj ≤ x)− P(Sj ≤ x)|

A. Naumov, V. Spokoiny, and V. Ulyanov. “Bootstrap confidence sets for spectral
projectors of sample covariance”. In: Probab. Theory Related Fields ()

V. Koltchinskii and K. Lounici. “Normal approximation and concentration of spectral
projectors of sample covariance”. In: Ann. Statist. ()
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Quantitative limit theorems in high dimensions

Theorem 9 (J. & W.)

Assume Setting 2 with m = 4.

(i) If λk = k−α, k ≥ 1, then

U(n‖P̂j − Pj‖2
2,‖Lj(Z )‖2

2) .p,α
j√
n

(log j log n)3/2

(ii) If λk = e−αk , k ≥ 1, then

U(n‖P̂j − Pj‖2
2,‖Lj(Z )‖2

2) .p,α

( j3 log3 n

n

)1/2

A. Naumov, V. Spokoiny, and V. Ulyanov. “Bootstrap confidence sets for spectral
projectors of sample covariance”. In: Probab. Theory Related Fields ()

V. Koltchinskii and K. Lounici. “Normal approximation and concentration of spectral
projectors of sample covariance”. In: Ann. Statist. ()
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Bootstrap approximations in high dimensions
Popular and powerful method are multiplier methods, which we also
employ here. Let (wi ) be an i.i.d. sequence with

Ew2
i = 1, Ew2q

i <∞. (13)

Our bootstrap method is quite simple and given below.

Algorithm 1.1 (Bootstrap)

Given (Xi ) and (wi ), construct the sequence (Xi )
∗ = (wiXi ). Treat (X ∗i )

as new sample, compute correspondingly:

Σ̂∗ and P̂∗j = Pj(Σ̂∗) bootstrapped versions

T ∗j = 1
2‖P̂

∗
j − P̂j‖2

2 and Tj = ‖P̂j − Pj‖2
2

A. Naumov, V. Spokoiny, and V. Ulyanov (2019). “Bootstrap confidence sets for spectral
projectors of sample covariance”. In: Probab. Theory Related Fields 174.3-4,
pp. 1091–1132
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Bootstrap approximations in high dimensions

Σ̂∗ and P̂∗j = Pj(Σ̂∗) bootstrapped versions

T ∗j = 1
2‖P̂

∗
j − P̂j‖2

2 and Tj = ‖P̂j − Pj‖2
2

Theorem 10 (J. & W.)

Assume Setting 2 with m = 8.

(i) If the eigenvalues decay polynomially with α ≥ 2, then w.h.p.

U
(
L(T ∗j |X1, . . . ,Xn),L(Tj)

)
.p,α n−1/8(log j)3/4 +

j√
n

(log j log n)3/2

(ii) If the eigenvalues decay exponentially, then w.h.p.

U
(
L(T ∗j |X1, . . . ,Xn),L(Tj)

)
.p,α n−1/8 +

( j3 log3 n

n

)1/2
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Pervasive Factor models
Recall J = {1, . . . , J}, where we assume J ≥ 6.

Literature (approximate, pervasive) factor models: assumes the first J
eigenvalues diverge at rate � d (with d = dimH), all remaining
eigenvalues are bounded.

We assume that there exist constants 0 < c ≤ C <∞, such that

λ1 ≤ CλJ , λJ − λJ+1 ≥ cλJ ,
trJ c (Σ)

λ1
≤ C . (14)

Observe that this implies

tr(Σ)

λ1
� J,

which is the desired feature of pervasive factor models.
J. Bai (2003). “Inferential theory for factor models of large dimensions”. In:
Econometrica 71.1, pp. 135–171

James H. Stock and Mark W. Watson (2002). “Forecasting using principal components
from a large number of predictors”. In: J. Amer. Statist. Assoc. 97.460, pp. 1167–1179
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Theorem 11 (J. & W.)

Assume Setting 2 with m = 8. Then for j ∈ J
(i)

U
(
n
∥∥P̂j − Pj

∥∥2

2
,
∥∥LjZ∥∥2

2

)
.p

(J6

n

)1/2(
(log n)3/2 + J5/2

)
.

(ii) W.h.p. for j ∈ J

U
(
L(T ∗j |X1, . . . ,Xn),L(Tj)

)
.p

(J3

n

)1/5
+
(J6 log3 n

n

)1/2

+
(Jp log n

n

)1/2
+ n(6−q)/12.
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Take-home message

While the size of ‖Σ̂− Σ‖∞ is closely linked to the effective rank, the
behavior of λ̂j , P̂j , ûj is closely linked to the so-called relative ranks

Can use this to obtain limit theorems, concentration inequalities for
λ̂j , P̂j , ûj .

Thank you for your attention!
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Appendix

Corollary 12

Suppose we are in the i.i.d. setting with p ≥ 16. If (3) holds, then

E‖P̂j − Pj‖2
∞ ≤ E‖P̂j − Pj‖2

2 ≤ Cj2/n, 1 ≤ j ≤ C
√
n(log n)−5/2.
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Appendix

This result is (up to log terms) optimal in the case where
λj = Cj−α−1, α > 0 in a certain sense.

For such a polynomial decay, given that supj≥1 E|ηj |2p ≤ p!Cp for all
p ≥ 1, it has been shown that for any j ≥ 1 (exists also information
theoretic bound)

E
∥∥P̂j − Pj‖2

∞ ≥ c(j2/n) ∧ 1.

We obtain the optimal bound for almost the whole range (up to the
factor (log n)−5/2) where the trivial bound 2 does not apply.
Moreover, only require mild conditions.

Note: The stochastic behaviour of the scores (ηj)j≥1 in terms of their
dependence structure is irrelevant for the optimal algebraic structure
conditions. In other words, this result cannot be improved assuming
that (ηj)j≥1 are independent.
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that (ηj)j≥1 are independent.
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Factor model/Spiked covariance

Another prominent example ist the spiked covariance model.

Signature feature: Several eigenvalues are larger than the remaining.
Typically one is interested in recovering these leading eigenvalues and
their associated eigenvectors (spiked part), since these explain most
variation of the data.

One possible way to define the model: Assume H = Rd , let f1, . . . , fd
(‖fj‖ = 1) be orthogonal vectors and A be a covariance matrix such
that

C−1
A ≤ λd(A) ≤ λ1(A) ≤ CA.

For a sequence of weights ω1, . . . , ωd , consider the spiked covariance
model

Σ = F + A =
d∑

k=1

ω2
k fk f

>
k + A,

where F denotes the ’spiked parts’.
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Factor model/Spiked covariance

Generating probabilistic model: F1, . . . ,Fd is a martingale difference
sequence with EF 2

k = 1 (factor loadings).

Similarly: Y = (Y1, . . . ,Yd)> is a random vector where Y1, . . . ,Yd

form a martingale difference sequence.

F and Y are mutually uncorrelated, that is, all cross correlations are
zero.

Idiosyncratic error ε and canonical factor model are defined as

X =
d∑

k=1

ωkFk fk + ε, ε = A1/2Y .

Obviously, X has covariance matrix Σ.
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Factor model/Spiked covariance

Apply results: Need to control moments of ηj = λ
−1/2
j 〈X , uj〉.

We have a connection between moments of ηj and F , Y via the
following result.
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Apply results: Need to control moments of ηj = λ
−1/2
j 〈X , uj〉.

We have a connection between moments of ηj and F , Y via the
following result.

Proposition 3.1

For p ≥ 2, suppose that

E|Fk |p ≤ CF , E|Yk |p ≤ CY

for all k = 1, . . . , d . Then the conditions above imply Eηj = 0 and

max
j≥1

E|ηj |p ≤ Cη,

where Cη only depends on CF , CY and CA.
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Apply results: Need to control moments of ηj = λ
−1/2
j 〈X , uj〉.

We have a connection between moments of ηj and F , Y via the
following result.

Proposition 3.1

For p ≥ 2, suppose that

E|Fk |p ≤ CF , E|Yk |p ≤ CY

for all k = 1, . . . , d . Then the conditions above imply Eηj = 0 and

max
j≥1

E|ηj |p ≤ Cη,

where Cη only depends on CF , CY and CA.

Now get CLT and concentration inequalities.
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High persistence: long memory

Consider the standard time series model for financial data

Xi = viεi , i ∈ N,

where (εi )i∈N ∈ H are i.i.d. random variables, (v2
i )i∈N ∈ R is a

stationary, ergodic sequence that exhibits long memory and is
independent of (εi )i∈N.

To be more precise, assume

b−1
n

n∑
i=1

(
v2
i − Ev2

i

) d−→Wb,

where bn = nbL(n) for b ∈ (1/2, 1) and some slowly varying function
L(x). Wb is a nondegenerate random variable. Well-known example:
Wb corresponds to a fractional Brownian motion, hence a normal
distribution.
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High persistence: long memory

What is a natural operator of interest here?

Note: (Xi )i∈N for a martingale sequence (Xi = εivi ).

Subject to some additional regularity assumptions, the
Martingale-CLT implies

1√
n

n∑
i=1

Xi
d−→ N

(
0,Σ

)
, Σ = EXi ⊗ Xi = Ev2

0 Σε,

where Σε is the covariance operator of ε.

So the ’standard’ covariance operator Σ and the empirical counterpart
Σ̂ are still of high interest, where we recall

Σ̂ = Σ̂n =
1

n

n∑
i=1

Xi ⊗ Xi .
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High persistence: long memory

Need some assumptions: Suppose that E‖εi‖2 <∞, let Σε be the
covariance operator of εi , and

εi =
∑
j≥1

√
λεjujη

ε
ij , i ∈ N.
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Need some assumptions: Suppose that E‖εi‖2 <∞, let Σε be the
covariance operator of εi , and

εi =
∑
j≥1

√
λεjujη

ε
ij , i ∈ N.

Assumption 4.1

Suppose that for p ≥ 4

Eηεij = 0, E|ηεij |p ≤ Cε, Ev2
i = 1, E|vi |p ≤ Cv ,

for all i , j ≥ 1. Moreover, we assume that

E
∣∣ n∑
i=1

(
v2
i − Ev2

i

)∣∣2 ≤ Cvb
2
n b−1

n

n∑
i=1

(
v2
i − Ev2

i

) w−→Wb.
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High persistence: long memory

We now consider a triangular array of X
(n)
1 , . . . ,X

(n)
n ∈ Hn with

covariance operator Σ(n), n = 1, 2, . . . , satisfying our previous
long-memory setting.

Notation: everything gets an (n), for instance λ
(n)
j , and so on.
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High persistence: long memory

Theorem 4.2

Fix j0 ≥ 1. Suppose that λ
(n)
j , 1 ≤ j ≤ j0 are simple for all n ≥ 1 and

Assumption 4.1 holds with Cε, Cv independent of n. If

bnn
−1 max

1≤j≤j0

∑
k 6=j

λ
(n)
k

|λ(n)
j − λ

(n)
k |
→ 0 as n→∞,

and λ
(n)
j0
≤ λ(n)

i0
/2 for some fixed i0 > j0, then

nb−1
n

(
λ̂

(n)
1 − λ

(n)
1

λ
(n)
1

, . . . ,
λ̂

(n)
j0
− λ(n)

j0

λ
(n)
j0

)>
d−→
(
Wb, . . . ,Wb)>.
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High persistence: long memory

As one would expect, the long-memory behaviour transfers to the
fluctuations of the empirical eigenvalues.

Somewhat surprising: all converge towards the identical limit. In
particular, we have

nb−1
n max

1≤j ,k≤j0

∣∣∣∣ λ̂(n)
j − λ

(n)
j

λ
(n)
j

−
λ̂

(n)
k − λ

(n)
k

λ
(n)
k

∣∣∣∣ P−→ 0,

a result of the dominating nature of the long-memory component.

Note the different normalization

bnn
−1 max

1≤j≤j0

∑
k 6=j

λ
(n)
k

|λ(n)
j − λ

(n)
k |
→ 0 as n→∞.

Most likely an artifact in this case.
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High persistence: long memory

Consider the case where d = dimH <∞.

Theorem 4.3

In the previous setting, suppose that λ
(n)
1 is simple for all n ≥ 1. If d = dn

and the sequence dn
(
bnn
−1/2

)−p/2
is bounded,

1√
n

∑
k>1

λ
(n)
k

λ
(n)
1 − λ

(n)
k

→ 0 as n→∞,

then the sequence nb−1
n (λ̂

(n)
1 − λ

(n)
1 )/λ

(n)
1 is tight.

Convinced we can actually now prove a limit theorem.
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